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FOREWORD 
The ACS S Y M P O S I U M S E R I E S was founded in 1974 to provide a 
medium for publishing symposia quickly in book form. The 
format of the Series parallels that of the continuing A D V A N C E S 

IN C H E M I S T R Y S E R I E S except that, in order to save time, the 
papers are not typeset but are reproduced as they are submitted 
by the authors in camera-ready form. Papers are reviewed under 
the supervision of the Editors with the assistance of the Series 
Advisory Board and are selected to maintain the integrity of the 
symposia; however, verbatim reproductions of previously pub
lished papers are not accepted. Both reviews and reports of 
research are acceptable, because symposia may embrace both 
types of presentation. 
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PREFACE 

.ARTIFICIAL I N T E L L I G E N C E (AI) is not a new field, as AI dates back to the 
beginnings of computer science. It is not even new to the field of chemistry, 
as the DENDRAL project dates back to the early 1960s. AI is, however, just 
beginning to emerge from the ivory towers of academia. To many people it is 
still just a buzz word associated with no real applications. Because AI work 
involves people from multiple disciplines, the work is difficult to locate and 
the application is sometimes difficult to understand. 

We decided that now would be a good time for an AI book for several 
reasons: (1) enough applications can now be presented to expose newcomers 
to many of the possibilities that AI has to offer, (2) showing what everyone 
else is doing with AI should generate new interest in the field, and (3) we felt 
an overview was needed to collect the different areas of AI applications to 
help people who are starting to apply AI techniques to their disciplines. The 
final and possibly most important reason is our personal interest in the field. 

Chemistry is an ideal field for applications in AI. Chemists have been 
using computers for years in their day-to-day work and are quite willing to 
accept the aid of a computer. In addition, the DENDRAL project, 
throughout its long history, has graduated many chemists already trained in 
AI. It is not surprising that chemistry is one of the leading areas for AI 
applications. Scientists have been developing the theories of chemistry for 
centuries, but the standard approach taken by a chemist to solve a problem 
is heuristic; past experience and rules of thumb are used. AI offers a method 
to combine theory with these rules. These systems will not replace chemists, 
as is commonly thought; but rather, these programs will assist chemists in 
performing their daily work. 

Computer applications developed from theoretical chemistry tend to be 
algorithmic and numerical by nature. AI applications tend to be heuristic 
and symbolic by nature. Multilevel expert systems combine these techniques 
to use the heuristic power of expert systems to direct numerical calculations. 
They can also use the results of numerical calculations in their symbolic 
processing. The problems faced by chemists today are so complex that most 
require the added power of the multilevel approach to solve them. 

Defining exactly which applications constitute AI is difficult in any 
field. The problem in chemistry is even worse because chemical applications 
that use AI methods often use numerical calculations. Some applications 
that are strictly numerical accomplish tasks similar to AI programs. The key 
feature used to limit the scope of this book was symbolic processing. The 
work presented includes expert systems, natural language applications, and 
manipulation of chemical structures. 

ix 
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The book is divided into five sections. The first chapter is outside this 
structure and is an overview of the technology of expert systems. 

The book's first section, on expert systems, is a collection of expert-
system applications. Expert systems can simplistically be thought of as 
computerized clones of an expert in a particular specialty. Various schemes 
are used to capture the expert's knowledge of the specialty in a manner that 
the computer can use to solve problems in that field. Expert-systems 
technology is the most heavily commercialized area in AI as shown by the 
wide variety of applications that use this technology. These applications help 
show the breadth of problems to which AI has been applied. Much of the 
work from other sections of the book also uses expert-system techniques in 
some manner. 

The second section, on computer algebra, details chemical applications 
whose emphasis is on the mathematical nature of chemistry. As chemical 
theories become increasingly complex, the mathematical equations have 
become more difficult to apply. Symbolic processing simplifies the construc
tion of mathematical descriptions of chemical phenomena and helps chemists 
apply numerical techniques to simulate chemical systems. Not only does 
computer algebra help with complex equations, but the techniques can also 
help students learn how to manipulate mathematical structures. 

The third section, on handling molecular structures, presents the 
interface between algebra and chemical reactions. The storage of molecular 
representations in a computer gives the chemist the ability to manipulate 
abstract molecular structures, functional groups, and substructures. The 
rules that govern the changes in the molecular representations vary with each 
approach. Molecules can be described as connected graphs, and the 
theorems of graph theory can be used to define their similarity. Another 
approach uses heuristic rules for chemical substructures to define and display 
molecules. 

The fourth section, on organic synthesis, discusses methods to construct 
complex organic syntheses using simple one-step reactions. Many groups 
have used the computer to search for synthetic pathways for chemical 
synthesis in the past. Each approach must deal with the problem of multiple 
possible pathways for each step in the reaction. The chapters in this section 
apply AI techniques to select "good" paths in the synthesis. 

The final section, on analytical chemistry, is a combination of structure-
elucidation techniques and instrumental optimizations. Instrumental analysis 
can be broken into several steps: method development, instrumental 
optimization, data collection, and data analysis. The trend today in 
analytical instrumentation is computerization. Data collection and analysis 
are the main reasons for this. The chapters in this section cover all aspects of 
the process except data collection. Organic structure elucidation is really an 
extension of data analysis. These packages use spectroscopic data to 
determine what structural fragments are present and then try to determine 
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how those fragments are connected. Different people have used both 
individual spectroscopic techniques and combinations of techniques to solve 
this very difficult problem. This area holds great promise for future work in 
AI. 

We gratefully acknowledge the efforts of all the authors who contrib
uted their time and ideas to the symposium from which this book was 
developed. We also thank the staff of the ACS Books Department for their 
helpful advice. Finally, we acknowledge the encouragement and support we 
received from our management at Rohm and Haas Company. 

THOMAS H. PIERCE 

Rohm and Haas Company 
Spring House, PA 19477 

BRUCE A. HOHNE 

Rohm and Haas Company 
Spring House, PA 19477 

January 13, 1986 
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1 
Artificial Intelligence: The Technology of Expert Systems 

Dennis H . Smith 

Biotechnology Research and Development, IntelliGenetics, Inc., Mountain View, 
CA 94040 

Expert systems represent a branch of artificial intelligence that has 
received enormous publicity in the last two to three years. Many 
companies have been formed to produce computer software for what is 
predicted to be a substantial market. This paper describes what is meant 
by the term expert system and the kinds of problems that currently appear 
amenable to solution by such systems. The physical sciences and 
engineering disciplines are areas for application that are receiving 
considerable attention. The reasons for this and several examples of recent 
applications are discussed. The synergism of scientists and engineers with 
machines supporting expert systems has important implications for the 
conduct of chemical research in the future; some of these implications are 
described. 

Expert systems represent a sub-discipline of artificial intelligence (AI). Before beginning a 
detailed discussion of such systems, I want to outline my paper so that the focus and 
objectives are clear. The structure of the paper is simple. I will: 

• Describe the technology of expert systems 

• Discuss some areas of application related to chemistry 

• Illustrate these areas with some examples 

Although the structure of the paper is simple, my goal is more complex. It is simply 
stated, but harder to realize: I want to demystify the technology of applied artificial 
intelligence and expert systems. 

The word mystify means "to involve in mystery, to make difficult to understand, to 
puzzle, to bewilder." Therefore, I will try to remove some of the mystery, to make things 
easier to understand, to clarify what the technology is and what it can (and cannot) do. 

I am going to discuss a special kind of computer software, but software nonetheless. 

0097-6156/ 86/0306-0001 $06.00/ 0 
© 1986 American Chemical Society 

 P
ub

lic
at

io
n 

D
at

e:
 A

pr
il 

30
, 1

98
6 

| d
oi

: 1
0.

10
21

/b
k-

19
86

-0
30

6.
ch

00
1

In Artificial Intelligence Applications in Chemistry; Pierce, T., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1986. 



2 ARTIFICIAL INTELLIGENCE APPLICATIONS IN CHEMISTRY 

Everything I will describe could be built from the ground up using assembly language, 
BASIC or any other computer language. In the future, some expert systems will certainly 
be built using languages such as Fortran, C or PASCAL as opposed to LISP and PROLOG 
which are currently in vogue. So there is no mystery here. What is different, but is still 
not mysterious, is the approach taken by AI techniques toward solving symbolic, as opposed 
to numeric, problems. I discuss this difference in more detail, below. Most readers of this 
collection of papers will be scientists and engineers, engaged in research, business or both. 
They expect new technologies to have some substantial practical value to them in their 
work, or they will not buy and use them. So I will stress the practicality of the technology. 

Where is the technology currently? Several descriptions of the marketplace have 
appeared over the last year. Annual growth rates for companies involved in marketing 
products based on AI exceed 300%, far outstripping other new computer-based applications, 
such as control and management of information networks, private telephone networks, 
automation of the home and factory. Of course, those are growth rates, not market sizes or 
dollar volumes. The technology will ultimately be successful only to the extent that it does 
useful work, by some measure. In this paper I illustrate some areas where useful work can 
be, and is being, done. There are many expert systems under development at major 
corporations, in the areas of chemistry, chemical engineering, molecular biology and so 
forth. Because many of these systems are still proprietary, the examples I will discuss are 
drawn from work that is in the public domain. However, the casual reader will easily be 
able to generalize from my examples to his or her own potential applications. 

The Technology of Expert Systems 

I am going to begin my discussion of the technology of expert systems with two provocative 
statements. The first is: 

Knowledge engineering is the technology base of the "Second Computer Age" 

It is possible to use knowledge, for example, objects, facts, data, rules, to manipulate 
knowledge, and to cast it in a form in which it can be used easily in computer programs, 
thereby creating systems that solve important problems. 

The second statement is: 

What's on the horizon is not just the Second Computer Age, it's the 
important one! 

We are facing a second computer revolution while still in the midst of the first one! 
And it's probably the important revolution. 

Characteristics and Values of Expert Systems. What leads me to make such bold and risky 
statements? The answer can be summarized as follows. First, knowledge is power. You 
can't solve problems using any technology unless you have some detailed knowledge about 
the problem and how to solve it. This fact seems so obvious that it is unnecessary to state 
it. Many systems will fail, however, because the builders will attempt to build such systems 
to so lve i l l - d e f i n e d problems. 
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1. SMITH The Technology of Expert Systems 3 

Second, processing of this knowledge will become a major, perhaps dominant part of 
the computer industry. Why? Simply because most of the world's problem solving 
activities involve symbolic reasoning, not calculation and data processing. We have 
constructed enormously powerful computers for performing calculations, our number 
crunchers. We devote huge machines with dozens of disk drives to database management 
systems. Our need for such methods of computing will not disappear in the future. 
However, when we have to fix our car, or determine why a processing plant has shut down, 
or plan an organic synthesis, we don't normally solve sets of differential equations or pose 
queries to a large database. We might use such numerical solutions or the results of such 
queries to help solve the problem, but we are mainly reasoning, not calculating. 

How do we construct programs that aid us in reasoning as opposed to calculating? AI 
is the underlying science. It has several sub-disciplines, including, for example, robotics, 
machine vision, natural language understanding and expert systems, each of which will 
make a contribution to the second computer age. My focus is on expert systems. 

Knowledge engineering is the technology behind construction of expert systems, or 
knowledge systems, or expert support systems. Such systems are designed to advise, inform 
and solve problems. They can perform at the level of experts, and in some cases exceed 
expert performance. They do so not because they are "smarter" but because they represent 
the collective expertise of the builders of the systems. They are more systematic and 
thorough. And they can be replicated and used throughout a laboratory, company or 
industry at low cost. 

There are three major components to an expert system: 

• the knowledge base of facts and heuristics 

• the problem-solving and inference engine 

• an appropriate human-machine interface 

The contents of a knowledge base, the facts and rules, or heuristics, about a problem 
will be discussed shortly. The problem-solving and inference engine is the component of 
the system that allows rules and logic to be applied to facts in the knowledge base. For 
example, in rule-based expert systems, "IF-THEN" rules (production rules) in a knowledge 
base may be analyzed in two ways: 

• in the forward, or data-driven direction, to solve problems by asserting new 
facts, or conditions, and examining the consequences, or conclusions 

• in the backward, or goal-driven direction, to solve problems by hypothesizing 
conclusions and examining the conditions to determine if they are true. 

For the purposes of this paper, I will not describe the inference procedures further. I 
will also say very little about the human-machine interface. However, since expert systems 
are designed to be built by experts and used by experts and novices alike, the interface is of 
crucial importance. The examples discussed later illustrate how powerful interfaces are 
implemented through use of high resolution bit-mapped graphics, menu and "button" 
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4 ARTIFICIAL INTELLIGENCE APPLICATIONS IN CHEMISTRY 

driven operations, a "mouse" as a pointing device, familiar icons to represent objects such 
as schematics, valves, tanks, and so forth. 

The Knowledge Base. The knowledge base holds symbolic knowledge. To be sure, the 
knowledge base can also contain tables of numbers, ranges of numerical values, and some 
numerical procedures where appropriate. But the major content consists of facts and 
heuristics. 

The facts in a knowledge base include descriptions of objects, their attributes and 
corresponding data values, in the area to which the expert system is to be applied. In a 
process control application, for example, the factual knowledge might include a description 
of a physical plant or a portion thereof, characteristics of individual components, values 
from sensor data, composition of feedstocks and so forth. 

The heuristics, or rules, consist of the judgemental knowledge used to reason about 
the facts in order to solve a particular problem. Such knowledge is often based on 
experience, is used effectively by experts in solving problems and is often privately held. 
Knowledge engineering has been characterized as the process by which this knowledge is 
"mined and refined" by builders of expert systems. Again, using the motif of process 
control, such knowledge might include rules on how to decide when to schedule a plant or 
subsystem for routine maintenance, rules on how to adjust feedstocks based on current 
pricing, or rules on how to diagnose process failures and provide advice on corrective 
action. 

Expert systems create value for groups of people, ranging from laboratory units to 
entire companies, in several ways, by: 

• capturing, refining, packaging, distributing expertise; an "an expert at your 
fingertips"; 

• solving problems whose complexity exceeds human capabilities; 

• solving problems where the required scope of knowledge exceeds any 
individual's; 

• solving problems that require the knowledge and expertise of several fields 
(fusion); 

• preserving the group's most perishable asset, the organizational memory; 

• creating a competitive edge with a new technology. 

The packaging of complex knowledge bases leads to powerful performance. This 
performance is possible due to the thoroughness of the machine and the synthesis of 
expertise from several experts. Similarly, if the knowledge base cuts across several 
disciplines, the fusion of such knowledge creates additional value. An obvious value of 
expert systems is what is referred to above as preserving the organizational memory. Many 
organizations will have to confront the loss of some of their most valuable experts over the 
next few years, whether through graduation, death, a new job, or retirement. Several 
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1. SMITH The Technology of Expert Systems 5 

companies are turning to expert systems in order to capture the problem-solving expertise 
of their most valuable people. This preserves the knowledge and makes it available in 
easily accessible ways to those who must assume the responsibilities of the departing 
experts. 

Considering commercial applications of the technology, expert systems can create 
value through giving a company a competitive edge. This consideration means that the 
first companies to exploit this technology to build useful products will obviously be some 
steps ahead of those that do not. 

Some Areas of Application. I next summarize some areas of application where expert 
systems exist or are being developed, usually by several laboratories. Some of these areas 
are covered in detail in other presentations as part of this symposium. I want to emphasize 
that this is a partial list primarily of scientific and engineering applications. A similar list 
could easily be generated for operations research, economics, law, and so forth. Some of the 
areas are outside strict definitions of the fields of chemistry and chemical engineering, but I 
have included them to illustrate the breadth of potential applications in related disciplines. 

• Medical diagnosis and treatment 

• Chemical synthesis and analysis 

• Molecular biology and genetic engineering 

• Manufacturing: planning and configuration 

• Signal processing: several industries 

• Equipment fault diagnosis: several industries 

• Mineral exploration 

• Intelligent CAD 

• Instrumentation: set-up, monitoring, data analysis 

• Process control: several industries 

Many readers will have read about medical applications, the M Y C I N and 
INTERNIST programs. There are many systems being developed to diagnose equipment 
failures. Layout and planning of manufacturing facilities are obvious applications. 
Chemistry and molecular biology systems were among the earliest examples of expert 
systems and are now embodied in commercial systems. 

There is a suite of related applications involving signal processing. Whether the data 
are from images, oil well-logging devices, or military sensor systems, the problems are the 
same; vast amounts of data, only some of which are amenable to numerical analysis. Yet 
experts derive valid interpretations from the data. Systems have already been built to 
capture this expertise. 
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6 ARTIFICIAL INTELLIGENCE APPLICATIONS IN CHEMISTRY 

There are many diagnosis and/or advisory systems under development, applied to 
geology, nuclear reactors, software debugging and use, manufacturing and related financial 
services. 

There are several applications to scientific and engineering instrumentation which 
especially relevant to chemistry and chemical engineering. These include building into 
instruments expertise in instrument control and data interpretation, to attempt to minimize 
the amount of staff time required to perform routine analyses and to optimize the 
performance of a system. There are several efforts underway in process control, focused 
currently in the electrical power and chemical industries. 

Before looking at some applications in more detail, let me briefly describe why the 
number and scope of applications is increasing so dramatically. 

The Technology is Maturing Rapidly. The work that computers are being required to do is 
increasingly knowledge intensive. For example, instrument manufacturers are producing 
more powerful computer systems that are integral to their product lines. These systems are 
expected to perform more complex tasks all the time, i.e., to be in some sense "smarter". 
Two developments are proceeding in parallel with this requirement for "smarter" systems. 
The software technology for building expert systems is maturing rapidly. At the same 
time, workstations that support AI system development are making a strong entry into the 
computer market. For the first time, the hardware and software technology are at a point 
where development of systems can take place rapidly. 

Beginning in 1970, programming languages such as LISP became available. Such 
languages made representation and manipulation of symbolic knowledge much simpler than 
use of conventional languages. Around 1975, programming environments became 
available. In the case of LISP, its interactive environment, INTERLISP, made system 
construction, organization and debugging much more efficient. In 1980, research work led 
to systems built on top of LISP that removed many of the requirements for programming, 
allowing system developers to focus on problem solving rather than writing code. Some of 
these research systems have now evolved to become commercial products that dramatically 
simplify development of expert systems. Such products, often referred to as tools, are 
specifically designed to aid in the construction of expert systems and are engineered to be 
usable by experts who may not be programmers. 

Supporting evidence for the effects of these developments is found by examining the 
approximate system development time for some well known expert systems. Systems begun 
in the mid-1960's, DENDRAL and M A C S Y M A required of the order of 40-80 man-years to 
develop. Later systems of similar scope required less and less development time, of the 
order of several man years, as programming languages and system building tools matured. 
With current, commercially available tools, developers can expect to build a prototype of a 
system, with some assistance, in the order of one month. The prototype that results 
already performs at a significant level of expertise and may represent the core of a 
subsequent, much larger system (examples are shown below). Such development times were 
simply impossible to achieve with the limited tools that existed before mid-1984. 
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1. SMITH The Technology of Expert Systems 1 

Developing Expert Systems. How has such rapid progress been achieved? The 
improvement in hardware and software technologies is obviously important. Another 
important factor is that people are becoming more experienced in actually building systems. 
There has emerged, from the construction of many systems designed for diverse 
applications, a strong model for the basic steps required in constructing an expert system. 
The four major steps are as follows: 

• Select an appropriate application 

• Prototype a "narrow vertical slice" 

• Develop the full system 

• Field the system, including maintenance and updates 

First, one must select an appropriate application. There are applications that are so 
simple, that require so little expertise, that it is not worth the time and money to emulate 
human performance in a machine. At the other end of the spectrum, there are many 
problems whose methods of solution are poorly understood. For several reasons, these are 
not good candidates either. In between, there are many good candidates, and in the next 
section I summarize some of the rules for choosing them. 

Second, a prototype of a final system is built. This prototype is specifically designed 
to have limited, but representative, functionality. During development of the prototype, 
many important issues are resolved, for example, the details of the knowledge 
representation, the man-machine interface, and the complexity of the rules required for high 
performance. Rapid prototyping is already creeping into the jargon of the community. 
The latest expert system building tools are sufficiently powerful that one can sit down and 
try various ideas on how to approach the problem, find out what seems logical and what 
doesn't, reconstruct the knowledge base into an entirely different form, step through 
execution of each rule and correct the rules interactively. This approach differs 
substantially from traditional methods of software engineering. 

The third step, however, reminds us that we do have to pay attention to good 
software development practices if a generally used, and useful system is to result from the 
prototype. Development of a full system, based at least in part on the prototype, proceeds 
with detailed specifications as the system architects define and construct its final form. 

The last step is just as crucial as its predecessors. The system must be tested in the 
field, and the usual requirements in the software industry for maintenance and updates 
pertain. 

The primary differences, then, between development of expert systems and more 
traditional software engineering are found in steps one and two, above. First, the problems 
chosen will involve symbolic reasoning, and will require the transfer of expertise from 
experts to a knowledge base. Second, rapid prototyping, the "try it and see how it works, 
then fix it or throw it away" approach will play an important role in system development. 
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8 ARTIFICIAL INTELLIGENCE APPLICATIONS IN CHEMISTRY 

The only phase of development of expert systems that I will say any more about is 
the first, and in many ways the most crucial, step for those who are contemplating building 
expert systems for the first time. How do you go about selecting an appropriate 
application? Here are the basic criteria: 

• Symbolic reasoning 

• Availability and commitment of expert 

• Importance of problem 

• Scope of problem 

• General agreement among specialists 

• Data and test cases available 

• Incremental progress possible 

First, the application should involve symbolic reasoning. There is no point in trying 
to develop an expert system to perform numerical calculations, for example, Fourier 
transforms. 

Second, there should be experts available that can solve the problems involved in the 
selected application and they must be committed to spend their time working with the 
system and other experts in developing the knowledge base. If such experts are not 
available, or will not commit to the effort, forget the application. 

Third, the problem must be important. It must be a problem whose computer-aided 
solution creates value by some measure. Such problems may require substantial expertise, 
or they may be simple, repetitive, and labor intensive, test. No one will invest in a system 
if the problems are infrequently encountered and can be solved quickly by persons of 
normal intelligence. 

Fourth, the scope of the application must be bounded. There must be some 
specification of the functionality of the expert system and characteristics of the problems it 
is expected to solve. Trying to build an expert system to solve the world's economic 
problems is not a good application to choose. However, selecting a product mix from an oil 
refinery based on the current state of supply and demand in the world's energy markets 
might be a good application. 

Fifth, there must be general agreement among experts on how to solve the problem, 
on what constitutes the facts in the domain, and what are judgemental rules. Without such 
agreement, the values mentioned previously of extending the knowledge base beyond any 
single individual's contribution, and fusion of expertise across several domains will not be 
realized. More practically, without general agreement, other experts will criticize the 
performance of the system. 

Sixth, there must be ample data and test cases available to convince the system 
builders that some defined level of performance has been achieved. Although this may seem 
obvious, some systems have been built and tuned to perform well on a single test case. 
Needless to say, such systems usually fail when confronted with a second test case. 
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1. SMITH The Technology of Expert Systems 9 

Seventh, it must be possible to build the system incrementally. It must be easy to 
extend the knowledge base and modify its contents, because as you all know, rules often 
change as new evidence is gathered. The progress of science and technology are always 
working to make our knowledge inadequate or obsolete. We must learn new things; we 
must be able to instruct the expert system accordingly. 

Selected Applications 

Biological Reactors. In this section I discuss some applications that are at least indirectly 
related to chemical science and engineering. The first example, illustrated in Figure 1, is 
derived from a simulation and diagnosis of a biological reactor that we put together for a 
demonstration. 

Because the expert system was not connected to a real reactor, we built a small table-
driven simulation to model the growth of cells in suspension. The graphical interface 
includes images representing the reactor itself, several feed bins and associated valves. Also 
shown in Figure 1 are several types of gauges, including a strip chart, monitors of various 
states and alarm conditions, temperature, and the on/off state of heaters and coolers. 

The simulation runs through a startup phase, then through an exponential growth 
phase which is inhibited by one of several conditions. The expertise captured in the rules in 
the knowledge base is designed to diagnose one of several possible faults in the system and 
to take action to correct the condition. Growth inhibition may be caused by incorrect 
temperature, depletion of nutrients, incorrect pH or contamination. The system is able to 
diagnose the fault and to take action to adjust temperatures, the pH, add nutrients or 
recommend the batch be discarded due to contamination. A simple example, but one that 
illustrates several points mentioned earlier. The graphical interface is essential for non
experts. The system was developed rapidly as a prototype. As such, it does useful things, 
it can be examined, criticized, refined, and can represent the beginnings of a larger system. 
Combinations of relatively simple rules can diagnose problems and take specific actions. 

Communication Satellites. The next example illustrates an expert system similar to those 
under development in process control and instrumentation companies. These systems are 
designed to diagnose faults and suggest corrective actions. 

An aerospace company in California monitors telecommunication satellites in 
geosynchronous orbit, 23,000 miles away in space. When something goes wrong on that 
satellite, $50 to $100 million are dependent on taking the right corrective action. This 
company is using expert systems to capture the knowledge of the developers of the satellites 
in diagnosing and correcting problems, and to make this knowledge available to all 
operators responsible for monitoring the condition of on-board systems. 

Like many modern instruments, their instrument, the satellite, is connected to their 
computer systems through an interface, in this case an antenna dish that transfers data 
from the satellite to computers at a ground control center. 
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10 ARTIFICIAL INTELLIGENCE APPLICATIONS IN CHEMISTRY 

Figure 1. Graphics screen for the prototype expert system for 
d iagnos ing f a u l t s i n a b i o l o g i c a l r e a c t o r . The screen shows a 
schematic of the r e a c t o r , together w i t h gauges, s t r i p c h a r t s , and 
" t r a f f i c l i g h t s " i n d i c a t i n g the s ta te of the r eac to r obta ined from 
sensor r ead ings . (Reproduced w i t h p e r m i s s i o n . Copyr ight 1983 
I n t e l l i C o r p . ) 
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1. SMITH The Technology of Expert Systems II 

What is especially interesting about their problem of diagnosis of failures and advice 
On corrective measures is their treatment of the alarm conditions that trigger the execution 
of the expert system. The first goal of their rules is to focus on the single, or small set of, 
alarm(s) that are of highest priority, thereby ignoring what may be many lower priority 
alarms for a single problem. This usually allows^ isolation of the problem to a specific 
subsystem, such as the energy storage and heating system shown schematically in Figure 2. 
When the problem is localized, the system provides advice on what actions to take, then 
examines the other alarms to determine if they are of secondary importance or represent 
concurrent, major problems. Here, the graphical presentations, for example, Figure 2, 
provide information to the operator on which systems are being examined and where the 
faults may occur. 

Space Stations. The final example I have selected results from work done by the National 
Aeronautics and Space Administration (NASA) in preparation for flying the space station. 
NASA's general problem is that many space station systems must be repairable in orbit by 
astronauts who will not be familiar with the details of all the systems. Therefore, NASA is 
looking to the technology of expert systems to diagnose problems and provide advice to the 
astronauts on how to repair the problems. 

The problem they chose for their prototype is part of the life support system, 
specifically the portion that removes C 0 2 from the cabin atmosphere. This system already 
has been constructed, and NASA engineers are already familiar with its operation and how 
it can fail. Using this information they were able to build as part of their knowledge base a 
simple simulation for the modes of failure of each of the components in the system. The 
life support system is modular, in that portions of it can be replaced, once a problem has 
been isolated. The graphical representation chosen for the instrument schematic and panel 
is shown in Figure 3. 

On the left of Figure 3 is a schematic of the system, with hydrogen gas (the 
consumable resource) flowing through a valve to the six-stage fuel cell. Cabin atmosphere 
enters from the right, excess hydrogen plus C 0 2 exits at the H 2 Sink, and atmosphere 
depleted in C 0 2 exits at the Air Sink. There is a variety of pressure, flow, temperature and 
humidity sensors on the system. The lower subsystem is a coolant loop that maintains 
temperature and humidity in the fuel cell. On the right of Figure 3 is a schematic of an 
instrument panel that contains many of the instruments the astronauts will actually see. 

Each component in the schematic is active. Pointing to any component with a mouse 
yields a menu of possible modes of failure for that component. Selection of a failure results 
in setting parameters in the underlying knowledge base, which are of course reflected in the 
settings of the meters and gauges on the instrument panel. 

Simply pointing to the IDENTIFY button runs the rule system, which diagnoses the 
problem and provides advice on action to take to fix the life support system. The 
remainder of the screen is devoted to various switches and output windows that are used to 
build and debug the knowledge base. 

As an indication of how rapidly the technology of expert systems has matured, this 
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1. SMITH The Technology of Expert Systems 13 

prototype was built in our offices by two people from NASA, one a programmer who knew 
nothing about LISP, the other an expert on the life support system who knew nothing 
about programming. Neither had seen KEE™, our system building tool, before receiving 
training and beginning work on the prototype. The system, including all the graphics, the 
simulation and the rules, was built in four weeks. It is capable of diagnosing many of the 
important modes of failure of this portion of the life support system. Much work remains 
to be done before a final version of the expert system is completed, but this prototype 
provides an important starting point. 

Concluding Remarks 

I have used this paper as an introduction to what amount to revolutionary change in the 
software technologies of expert systems. At the same time, a revolution is occurring in 
hardware technology as well. At the moment, tools for building high performance expert 
systems run on special purpose hardware, LISP machines. These machines have been quite 
expensive, making entry into this area difficult for many laboratory groups. Several things 
are happening that are changing this situation dramatically. First, applications developed 
on LISP machines can now be ported to midi and minicomputers, making replication of a 
developed system much less expensive. Second, hardware vendors such as Xerox have 
recently announced LISP machines at modest prices, just under $10,000 for one such 
machine. Third, Texas Instruments has a contract to produce a VLSI implementation of its 
LISP machine on a chip. Successful development of this chip will further reduce the cost of 
a machine. Fourth, better programming environments are becoming available on midi and 
minicomputers, and in the short run some of these systems will mature to the point where 
significant work can be done, albeit at performances substantially below the LISP machines. 

In the longer term, better hardware for symbolic computation will become available. 
These machines will support large knowledge bases, and be able to perform rapid retrievals 
of data from them. Logical inferences will be performed at much higher rates, approaching 
those now achieved by arithmetic operations. Parallel architectures will further improve 
the speed of symbolic computations, just as they have done for numeric computations. The 
keyboard is already becoming obsolete in expert systems products. Menus accessed by 
pointing devices, or special purpose, programmable touchpads are much easier for most 
people to use. Speech and picture input is already achievable in simple systems; the 
improvement of this technology will continue to revolutionize human-machine interactions. 

An important characteristic of expert systems technology is that it can be added on to 
existing technologies. Such systems are already compatible with modern distributed 
computing environments, and can be networked easily with existing systems. Thus, 
investments in hardware and software are protected, and machines of more conventional 
architectures can be used as they are used now, for example, to support large data bases or 
to perform numerical calculations. An expert system can make use of these machines, 
passing requests for retrievals or calculations over a network, and gathering results to be 
used in the problem solving activities. 
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16 ARTIFICIAL INTELLIGENCE APPLICATIONS IN CHEMISTRY 

In my opinion, these technologies will have substantial impact on the practice of 
chemistry and chemical engineering. Everyone is familiar already with the extent to which 
computers have taken over routine tasks of data acquisition, reduction and presentation. 
Machines for data interpretation are now being constructed. Robotics is another discipline 
of AI that is now being used in simple systems to perform repetitive laboratory operations. 
The fusion of vision and expert systems technologies with robotics will make the latter 
much more flexible and adaptable to changing conditions. These changes, and many others 
brought on by the new technologies, will probably not diminish the total number of jobs 
available in the physical sciences, but it certainly will change what work is done in these 
jobs. There is already a history of jobs requiring limited skills being displaced by 
computers and automation. Expert systems will create additional displacements. A t the 
same time, more jobs related to building and maintaining such systems will become 
available, but these jobs will require substantially more education and skills. 

For jobs that already require substantial skills, expert systems will serve to make the 
people holding these jobs more productive. An analogy has been made to engineers who 
used to calculate trajectories by hand, but now use computers to perform these routine 
tasks, thereby freeing their time for more intellectual pursuits. Chemists and chemical 
engineers will see similar improvements to their own productivity. 

R E C E I V E D January 24, 1986 
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2 
A Knowledge-Engineering Facility 
for Building Scientific Expert Systems 

Charles E. Riese and J. D. Stuart 

Radian Corporation, Austin, TX 78766-0948 

RuleMaster is a general-purpose software package for 
building and delivering expert systems. Its features 
include 1) knowledge acquisition by inductive learning, 
2) specialized artif icial intelligence programming 
skil ls are not required, and 3) it runs on a wide range 
of micro-computers and mini-computers. RuleMaster was 
developed to enable scientists and engineers to 
incorporate human-like decision making as part of their 
computer applications. One such application is TOGA, an 
expert system to diagnose faults in large transformers 
based on gas chromatographic analysis of the insulating 
oil. 

An exper t system i s a computer program which con ta ins the captured 
knowledge o f an exper t i n some s p e c i f i c domain. The program i s a b l e 
t o g i v e a d v i c e w i t h i n t h e domain i n much t h e same manner as t h e 
human e x p e r t w o u l d , a s k i n g f o r i n f o r m a t i o n as i t i s needed , 
v o l u n t e e r i n g p a r t i a l diagnoses as they a re reached, and f u n c t i o n i n g 
w i t h i n c o m p l e t e o r p o s s i b l y e r r o n e o u s i n f o r m a t i o n . The e x p e r t 
s y s t e m i s a b l e t o p r o v i d e an e x p l a n a t i o n o f t h e l i n e o f r e a s o n i n g 
upon demand. 

U n t i l r e c e n t l y , most exper t system b u i l d i n g took p l a c e i n the 
r e sea rch departments o f u n i v e r s i t i e s and a few major c o r p o r a t i o n s . 
The p r i m a r y emphas is was i n v e s t i g a t i o n o f a r t i f i c i a l i n t e l l i g e n c e 
p r i n c i p l e s , and t h e a p p l i c a t i o n was o f s e c o n d a r y i m p o r t a n c e . The 
exper t systems t o o l s used r e f l e c t t h i s i n t e r e s t . They are t y p i c a l l y 
s t and-a lone A I computer systems, u s i n g s p e c i a l hardware and software 
environments ( u s u a l l y Lisp^based) not commonly found i n s c i e n t i f i c 
and eng inee r ing o r g a n i z a t i o n s . 

But a p p l i c a t i o n s u s u a l l y need a d i f f e r e n t type o f computing 
e n v i r o n m e n t . The r e a s o n i n g t a s k , a c c o m p l i s h e d by A I t e c h n i q u e s , 
o f t en c o n s t i t u t e s t e n percent or l e s s o f the code o f an a p p l i c a t i o n . 
The m a j o r i t y o f the code i s f o r c o n v e n t i o n a l programming t a s k s , such 
as da ta a c q u i s i t i o n , da ta base access , n u m e r i c a l c a l c u l a t i o n s , and 
g r a p h i c s . I n each a p p l i c a t i o n d o m a i n , computer ha rdware and 
s o f t w a r e has been s e l e c t e d t o match t h e needs o f i t s t a s k s . I n 

0097-6156/86/0306-0018$06.00/0 
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2. RIESE A N D STUART A Knowledge-Engineering Facility 19 

e s t a b l i s h e d f i e l d s l i k e c h e m i s t r y , computer s o l u t i o n s h a v e been 
i m p l e m e n t e d and i n use f o r y e a r s . I t i s no t r e a s o n a b l e f o r t h e A I 
component , a r e l a t i v e l y s m a l l a d d i t i o n t o t h e t o t a l s y s t e m , t o 
d i c t a t e major changes t o the computing environment. 

W h i l e the o r i g i n a l exper t system approaches were s u i t a b l e f o r 
A I r e s e a r c h , s e v e r a l t y p e s o f p r o b l e m s a r e e n c o u n t e r e d when t h e 
emphasis i s s h i f t e d t o s c i e n t i f i c e x p e r t s y s t e m a p p l i c a t i o n s . 
I n t h e o r i g i n a l a p p r o a c h e s , e x p e r t s y s t e m b u i l d i n g i s s l o w and 
e x p e n s i v e due t o t h e amount o f e x p e r t and k n o w l e d g e e n g i n e e r t i m e 
r e q u i r e d t o e x p r e s s and t e s t r u l e s . The c o s t o f A I ha rdware and 
s p e c i a l A I programmers makes s m a l l a p p l i c a t i o n s p r o h i b i t i v e l y 
expens ive . The exper t systems are s t and -a lone programs, and i t i s 
d i f f i c u l t or i m p o s s i b l e t o i n t e g r a t e t h e i r r eason ing w i t h e x i s t i n g 
s c i e n t i f i c sof tware. Sometimes, f i n i s h e d expert systems can not be 
u s e d i n t h e f i e l d b e c a u s e t h e y a r e t o o s l o w , o r r e q u i r e 
i n a p p r o p r i a t e l y expens ive hardware. 

B e c a u s e o f t h e c u r r e n t h i g h demand f o r e x p e r t s y s t e m 
a p p l i c a t i o n s , sof tware packages which a re op t imized f o r a p p l i c a t i o n 
b u i l d i n g , r a t h e r t h a n f o r A I t e c h n i q u e r e s e a r c h , h a v e been 
d e v e l o p e d . One o f t h e s e i s R u l e M a s t e r (l)9 w h i c h i s d e s i g n e d t o 
e x t r a c t exper t r eason ing and t o i nco rpo ra t e i t i n t o a wide range o f 
s c i e n t i f i c and e n g i n e e r i n g a p p l i c a t i o n s . I n c o n t r a s t w i t h many 
other A I approaches, Ru leMas te r i s based on contemporary s t r u c t u r e d 
programming p r i n c i p l e s . C o n v e n t i o n a l m i c r o - and mini-computers may 
be u sed by any computer p r o f e s s i o n a l t o b u i l d e x p e r t sys tems 
i n t e g r a t e d w i t h e x i s t i n g computer programs. A knowledge a c q u i s i t i o n 
system based on i n d u c t i v e l e a r n i n g speeds up the r u l e genera t ion and 
t e s t i n g p r o c e s s . A p r o c e d u r a l r e p r e s e n t a t i o n o f t h e r u l e base i s 
a u t o m a t i c a l l y g e n e r a t e d , p r o v i d i n g c o n s i s t e n c y and c o m p l e t e n e s s 
check ing and e f f i c i e n t run- t ime behav io r . Embedding exper t system 
r e a s o n i n g i n t o e x i s t i n g sys tems i s s u p p o r t e d by two f e a t u r e s : 
access t o e x t e r n a l user programs from the Ru leMas te r r u l e language, 
and t h e a u t o m a t i c g e n e r a t i o n o f a C code r e p r e s e n t a t i o n o f t h e 
expert sys t em. 

RuleMaster D e s c r i p t i o n 

H i s t o r y . R a d i a n C o r p o r a t i o n i s a t e c h n i c a l c o n s u l t i n g company, 
employing about 1000 people . About h a l f o f Radian's business i s i n 
t h e c h e m i s t r y and c h e m i c a l e n g i n e e r i n g f i e l d s . I n 1981 , R a d i a n 
management r e a l i z e d t h a t exper t systems c a p a b i l i t y c o u l d enhance and 
complement e x i s t i n g c o n s u l t i n g a c t i v i t i e s . Radian entered i n t o an 
a g r e e m e n t w i t h D o n a l d M i c h i e , o f E d i n b u r g h U n i v e r s i t y a n d 
I n t e l l i g e n t Termina l s L i m i t e d (ITL). For a number o f y e a r s , he had 
done r e s e a r c h i n i n d u c t i v e l e a r n i n g and i n o t h e r e x p e r t s y s t e m 
t e c h n i q u e s , and o f t e n used c o n v e n t i o n a l s t r u c t u r e d programming 
languages l i k e P a s c a l . He noted t h a t the s p e c i a l A I environments 
were p r i m a r i l y u s e f u l fo r r e sea rch i n t o A I t echn iques , and were not 
n e c e s s a r y f o r an e x p e r t sys tems package o r i e n t e d t o w a r d b u i l d i n g 
a p p l i c a t i o n s . R u l e M a s t e r was d e s i g n e d and d e v e l o p e d by I T L and 
R a d i a n d u r i n g 1982 and 1983. S i n c e t h e n , b o t h companies h a v e 
c o n t i n u e d e n h a n c i n g R u l e M a s t e r , and s e v e r a l dozen e x p e r t s y s t e m 
a p p l i c a t i o n s a re under c o n s t r u c t i o n or completed. 
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Components. The two p r i n c i p l e components o f RuleMaster a r e : 

R a d i a l : a p r o c e d u r a l , b l o c k s t r u c t u r e d l a n g u a g e f o r 
exp re s s ing d e c i s i o n r u l e s , and 

RuleMaker: the knowledge a c q u i s i t i o n system; induces d e c i s i o n 
t r ee s from examples o f exper t dec i s i on -mak ing , and 
e x p r e s s e s t h e s e d e c i s i o n s t r e e s as e x e c u t a b l e 
R a d i a l code, 

R u l e M a s t e r e x p e r t sys tems a r e r e p r e s e n t e d as R a d i a l programs. To 
b u i l d an exper t system, domain knowledge i s n o r m a l l y entered i n two 
p a r t s : a modu le s t r u c t u r e and t h e b o d i e s o f t h e m o d u l e s . The 
s t r u c t u r e def ines the h i e r a r c h i c a l o r g a n i z a t i o n o f d e c i s i o n s used t o 
s o l v e the problem. The code w i t h i n each module def ines the d e t a i l s 
o f one o f these d e c i s i o n s . 

RuleMaker i s a knowledge e x t r a c t i o n u t i l i t y f o r b u i l d i n g and 
t e s t i n g t h e d e c i s i o n l o g i c c o n t a i n e d w i t h i n R a d i a l m o d u l e s . The 
l o g i c i s s p e c i f i e d as a t a b l e o f examples o f c o r r e c t e x p e r t 
d e c i s i o n s f o r each module. RuleMaker t ransforms each example se t 
i n t o an e q u i v a l e n t d e c i s i o n t r e e , and a u t o m a t i c a l l y generates the 
body o f the module i n the form o f R a d i a l code. System b u i l d e r s may 
a l s o choose t o e n t e r R a d i a l code d i r e c t l y , a l t h o u g h t h e y u s u a l l y 
p r e f e r t o work w i t h example t a b l e s . 

C o n s u l t a t i o n o f an exper t system i s accompl i shed by u s i n g i t s 
R a d i a l code r e p r e s e n t a t i o n as inpu t t o the R a d i a l i n t e r p r e t e r . The 
i n t e r p r e t e r f i r s t performs completeness and c o n s i s t e n c y checks , and 
then provides i n t e r a c t i v e run- t ime suppor t . 

I n d u c t i v e L e a r n i n g ( R u l e M a k e r ) . Expe r t s a re best a b l e t o e x p l a i n 
complex concepts t o human appren t i ces i m p l i c i t l y by u s i n g examples 
o f the exper t ' s dec i s ion -mak ing , r a t h e r than by e x p l i c i t l y s t a t i n g 
f u n d a m e n t a l t h e o r e t i c a l p r i n c i p l e s . The a p p r e n t i c e q u i c k l y 
g e n e r a l i z e s these example d e c i s i o n s t o form work ing r u l e s , which he 
a p p l i e s when s i m i l a r s i t u a t i o n s a re encountered. 

R u l e M a s t e r f s knowledge a c q u i s i t i o n t o o l , Ru leMaker , employs a 
l e a r n i n g p r o c e s s s i m i l a r t o t h a t o f t h e a p p r e n t i c e . To t e a c h a 
concept t o Ru leMaker , the exper t p r o v i d e s a s e t o f examples ( c a l l e d 
a t r a i n i n g s e t ) o f c o r r e c t d e c i s i o n s w i t h i n some c o n t e x t . E a c h 
t r a i n i n g se t con ta ins a l i s t o f the a t t r i b u t e s which a re f a c t o r s fo r 
de te rmin ing the cho ice o f a c t i o n . Each example con ta ins a v a l u e fo r 
each o f t h e a t t r i b u t e s , t o g e t h e r w i t h t h e s p e c i f i e d a c t i o n s t o be 
t aken when t h a t combinat ion o f a t t r i b u t e v a l u e s i s encountered. The 
R u l e M a k e r u t i l i t y c h e c k s each t r a i n i n g s e t f o r c o m p l e t e n e s s and 
c o n s i s t e n c y , and then generates a p r o c e d u r a l r e p r e s e n t a t i o n o f the 
knowledge embodied i n the example. 

To i l l u s t r a t e t h i s , t h e example s e t o f F i g u r e 1 shows how a 
s i m p l e corona d e t e c t i o n d e c i s i o n ( l i k e l y , p o s s i b l e , or u n l i k e l y ) i n 
TOGA (Transformer O i l Gas A n a l y s i s ) might be s p e c i f i e d . TOGA i s an 
exper t system t h a t diagnoses f a u l t s i n l a r g e e l e c t r i c a l t ransformers 
and w i l l be d e s c r i b e d i n d e t a i l l a t e r i n t h i s pape r . The c o r o n a 
d e c i s i o n i s based on f o u r a t t r i b u t e s : H2, t h e r m a l , H2 /C2H2, and 
t e m p e r a t u r e . The a t t r i b u t e "H2 I ! i s t h e c o n c e n t r a t i o n o f h y d r o g e n 
g a s ; i t may be l o w , medium, o r h i g h , a c c o r d i n g t o n u m e r i c a l r anges 
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s e t by t h e e x p e r t i n a n o t h e r R a d i a l m o d u l e . " T h e r m a l " r e f e r s t o 
t h e r m a l l y generated hydrocarbon gases, which may be absent , s l i g h t , 
or d e f i n i t e l y present . The other two a t t r i b u t e s are the hydrogen-
t o - a c e t y l e n e r a t i o and the es t imate o f the temperature a t which the 
hydrocarbon gases were generated. A h i e r a r c h y o f r u l e s s u p p l i e d by 
the exper t determines the v a l u e o f each o f these a t t r i b u t e s , based 
e v e n t u a l l y on t h e n u m e r i c a l c o n c e n t r a t i o n s r e c e i v e d from the gas 
chromatograph. 

The d e c i s i o n f o r each example i s expressed as an "ac t ion -nex t 
s t a t e " p a i r . The " a c t i o n " i s a re fe rence t o execu tab le R a d i a l code, 
which c o n s i s t s o f a sequence o f R a d i a l statements. These statements 
may c o n t a i n r e f e r e n c e s t o e x t e r n a l programs i n v a r i o u s l a n g u a g e s 
( t h i s w i l l be d i s cus sed fu r the r l a t e r ) . The "next s t a t e " desc r ibes 
t h e c o n t e x t t o w h i c h c o n t r o l i s t o pass a f t e r t h e a c t i o n i s 
c o m p l e t e d . F o r d i a g n o s t i c e x p e r t s y s t e m s , s u c h as TOGA, t h e n e x t 
s t a t e w i l l u s u a l l y be the " g o a l " s t a t e o f the module. Th is passes 
c o n t r o l back t o the c a l l i n g module. For p r o c e d u r a l expert systems, 
s u c h as r o b o t i c s and i n s t r u m e n t a t i o n c o n t r o l a p p l i c a t i o n s , t h e 
c o n t r o l w i l l be t r a n s f e r r e d between s e v e r a l s t a t e s w i t h i n a module 
t o implement l o o p i n g . 

The d e c i s i o n t r e e f o r t h e t r a i n i n g s e t o f F i g u r e 1, as 
g e n e r a t e d by R u l e M a k e r , i s shown i n F i g u r e 2. The g e n e r a t e d t r e e 
ag ree s w i t h a l l d e c i s i o n s r e p r e s e n t e d i n t h e example s e t , and 
g e n e r a l i z e s t o r e a c h d e c i s i o n s f o r u n s p e c i f i e d p o r t i o n s o f t h e 
s p a c e . The r u l e i n d u c t i o n a l g o r i t h m , c a l l e d ID3 (2 ) , uses 
i n f o r m a t i o n t h e o r e t i c t e c h n i q u e s t o r e d u c e t h e number o f d e c i s i o n 
nodes i n the generated t r e e . 

R u l e Language ( R a d i a l ) . Ru leMas te r exper t systems a re expressed i n 
R a d i a l , a b l o c k s t r u c t u r e d i n t e r p r e t e d l a n g u a g e w i t h a s y n t a x 
s i m i l a r t o P a s c a l and ADA. R a d i a l i s a s i m p l e , e a s y - t o - l e a r n 
l a n g u a g e w h i c h s u p p o r t s t h e f u l l r a n g e o f e x p e r t s y s t e m 
c a p a b i l i t i e s . 

The b u i l d i n g b l o c k o f R a d i a l , c o r r e s p o n d i n g t o t h e P a s c a l 
procedure, i s c a l l e d a "module". The syntax w i t h i n each module i s 
based on f i n i t e automata theo ry , t o p r o v i d e the c o n t r o l s t r u c t u r e s 
needed t o s u p p o r t b o t h d i a g n o s t i c and p l a n n i n g a s p e c t s o f e x p e r t 
sys tems a p p l i c a t i o n s . O t h e r l a n g u a g e f ea tu r e s i n c l u d e r e c u r s i v e 
r o u t i n e c a l l s , argument p a s s i n g , s c o p e d v a r i a b l e and f u n c t i o n s , 
a b s t r a c t da ta t ypes , and u se r -de f ined o v e r l o a d e d opera tors . B u i l t -
i n da ta types i n c l u d e s t r i n g , i n t e g e r , f l o a t i n g p o i n t , and boolean . 

The R a d i a l code f o r t h e d e c i s i o n t r e e o f F i g u r e 2 i s shown i n 
F i g u r e 3. T h i s code was g e n e r a t e d by R u l e M a k e r . E x p e r t s h a v e 
d i f f i c u l t y c o r r e c t l y gene ra t ing a d e e p l y nested c o n d i t i o n a l phrase 
l i k e t h i s , bu t t h e y a r e a b l e t o i n s p e c t i t f o r p o s s i b l e e r r o r s o r 
omi s s ions . 

TOGA uses t h e b u i l t - i n n u m e r i c a l c a p a b i l i t i e s o f R a d i a l t o 
c o m p u t e f u n c t i o n s o f c o n c e n t r a t i o n v a l u e s , w h i c h a r e u s e d 
e x t e n s i v e l y i n t h e r u l e s . The r a t i o o f h y d r o g e n t o a c e t y l e n e 
c o n c e n t r a t i o n i n the corona r u l e i s a s i m p l e example o f t h i s . U s e r -
de f ined compound da ta types a re used t o handle b l o c k s o f da ta as a 
s i n g l e named s t r u c t u r e . These fea tures are i n v a l u a b l e i n b u i l d i n g 
p r a c t i c a l exper t systems, but a re not a v a i l a b l e w i t h a l l packages. 

Most R a d i a l code i s cons t ruc ted by RuleMaker from t r a i n i n g se ts 
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H2 the rma l H2/C2H2 temperature a c t i o n 

h i g h - h i g h low => ( l i k e l y , 
med absent h i g h low => I : l i k e l y , 

h i g h - h i g h moderate => < p o s s i b l e , 
med absent h i g h moderate => ( p o s s i b l e , 

h i g h - h i g h h i g h => ( u n l i k e l y , 
med absent h i g h h i g h => ( u n l i k e l y , 
med present - moderate => ( u n l i k e l y , 
med s l i g h t - moderate => ( u n l i k e l y , 
low - - - => ( u n l i k e l y , 

- — low — => ( u n l i k e l y , 

F i g u r e 1. Example se t f o r corona r u l e . 

next 
s t a t e 

GOAL) 
GOAL) 

unlikely 

unlikely 

marf 
unlikely likely likely unlikely ( thermal ) possible 

absent <·" [^^rresent 

possible unlikely unlikely 

Figure 2. Decision tree f o r corona determination. 

I F (temp) IS 
" low" : I F (H2/C2H2) IS 

" h i g h " : I F (H2) IS 
" low" : ( " u n l i k e l y " -> r e s u l t , GOAL ) 
"med" : ( " l i k e l y " -> r e s u l t , GOAL ) 
ELSE ( " l i k e l y " -> r e s u l t , GOAL ) 

ELSE ( " u n l i k e l y " -> r e s u l t , GOAL ) 
"moderate" : I F (H2/C2H2) IS 

" h i g h " : I F (H2) IS 
" low" : ( " u n l i k e l y " -> r e s u l t , GOAL ) 
"med" : I F ( thermal) IS 

"absent" : ( " p o s s i b l e " -> r e s u l t , GOAL ) 
" s l i g h t " : ( " u n l i k e l y " -> r e s u l t , GOAL ) 
ELSE ( " u n l i k e l y " -> r e s u l t , GOAL ) 

ELSE ( " p o s s i b l e " -> r e s u l t , GOAL ) 
ELSE ( " u n l i k e l y " -> r e s u l t , GOAL ) 

EI£E ( " u n l i k e l y " -> r e s u l t , GOAL ) 

Figure 3 . Corona determination r u l e induced from Figure 1 
examples, as expressed i n automatically generated R a d i a l code. 

 P
ub

lic
at

io
n 

D
at

e:
 A

pr
il 

30
, 1

98
6 

| d
oi

: 1
0.

10
21

/b
k-

19
86

-0
30

6.
ch

00
2

In Artificial Intelligence Applications in Chemistry; Pierce, T., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1986. 



2. RIESE A N D STUART A Know ledge-Engineering Facility 23 

o f examples, as de sc r i bed i n the p r ev ious s e c t i o n . However, R a d i a l 
code can a l s o be entered d i r e c t l y by the system b u i l d e r s , i f they so 
d e s i r e . 

E x p l a n a t i o n . A u s e r may a s k f o r e x p l a n a t i o n o f t h e l i n e o f 
r e a s o n i n g a t any t i m e d u r i n g an e x p e r t s y s t e m c o n s u l t a t i o n . 
R u l e M a s t e r p r e s e n t s e x p l a n a t i o n as a l i s t o f p r e m i s e s and 
c o n c l u s i o n s i n E n g l i s h - l i k e t e x t . The e x p l a n a t i o n d e s c r i b e s t h e 
execu t ion pa th which l e d up t o the cu r r en t c o n c l u s i o n or ques t ion . 
E x p l a n a t i o n i s presented i n p roo f o r d e r i n g , which u s u a l l y d i f f e r s 
f rom t h e o r d e r i n w h i c h t h e q u e s t i o n s and c o n c l u s i o n s were 
encountered. Th i s i s p e r c e i v e d as more r e l e v a n t and unders tandable 
than the t ime-ordered p r e s e n t a t i o n o f f i r e d r u l e s , as i s present i n 
most exper t system approaches. 

A sample e x p l a n a t i o n fo r the corona d e c i s i o n i s as f o l l o w s : 

S i n c e the es t imated o i l temperature i s moderate 
when H2/C2H2 i s abovej* 
and the c o n c e n t r a t i o n o f H2 i s medium 
and overhea t ing o f o i l i s absent 
i t f o l l o w s t h a t a corona i s p o s s i b l e 

T h i s t e x t was c o n s t r u c t e d a t r u n - t i m e by t h e R a d i a l i n t e r p r e t e r 
from t e x t fragments p r o v i d e d beforehand by the system b u i l d e r s . I t 
d i s p l a y s , i n E n g l i s h , t h e p a t h t h r o u g h t h e c o r o n a d e c i s i o n t r e e 
( F i g u r e 2 ) . 

When e x p l a n a t i o n i s r e q u e s t e d a t i n t e r m e d i a t e p o i n t s i n a 
s e s s i o n , j u s t t h e r e a s o n i n g f o r t h e c u r r e n t d e c i s i o n t r e e i s 
p r e s e n t e d . By a s k i n g f o r e l a b o r a t i o n , t h e u s e r c a n i n s p e c t t h e 
r ea son ing u n d e r l y i n g the c u r r e n t r u l e . E l a b o r a t i o n o f t h e c o r o n a 
d e c i s i o n above wou ld y i e l d d e s c r i p t i o n s o f the l i n e s o f r ea son ing 
w h i c h d e t e r m i n e d t h e p r e m i s e s : t h a t t h e o i l t e m p e r a t u r e was 
moderate, t h a t the c o n c e n t r a t i o n o f H2 was medium, e tc . E l a b o r a t i o n 
may be repeated u n t i l the user i s s a t i s f i e d or u n t i l a l l the s teps 
have been examined. 

I f e x p l a n a t i o n i s requested a t the end o f a s e s s i o n , the e n t i r e 
l i n e o f r eason ing l e a d i n g up t o the l a t e s t t o p - l e v e l c o n c l u s i o n i s 
p r e s e n t e d i n p r o o f o r d e r . I n t e r m e d i a t e c o n c l u s i o n s a r e d e r i v e d 
before they are used i n premises . 

The number o f l e v e l s o f e x p l a n a t i o n a v a i l a b l e depends on the 
n e s t i n g o f r o u t i n e c a l l s a t run- t ime . The h i e r a r c h i c a l o r g a n i z a t i o n 
o f modu les makes i t e a s i e r t o c o n t r o l and u n d e r s t a n d t h e r u n - t i m e 
behav io r o f r u l e execu t ion . 

E x p l a n a t i o n - d r i v e n e x p e r t s y s t e m b u i l d i n g l e a d s t o r o b u s t 
s y s t e m s . By t e s t i n g t o e n s u r e t h a t t h e r i g h t c o n c l u s i o n s a r e 
r e a c h e d f o r t h e r i g h t r e a s o n s , t h e p r o b a b i l i t y o f t h e r e a s o n i n g 
b e i n g c o r r e c t f o r u n f o r e s e e n s i t u a t i o n s i s enhanced. Q u a l i t y 
e x p l a n a t i o n a l s o makes systems more u s e f u l as t e a c h i n g t o o l s . 

E x t e r n a l Processes . The R a d i a l l a n g u a g e s u p p o r t s i n t e r f a c i n g t o 
sof tware w r i t t e n i n the v a r i o u s computer languages a v a i l a b l e under 
UNIX: F o r t r a n , C, P a s c a l , L i s p , e t c . The R a d i a l l a n g u a g e t a k e s 
c a r e o f t h e d e t a i l s o f p a s s i n g arguments t o and f rom e x t e r n a l 
r o u t i n e s . T h i s c a p a b i l i t y a l l o w s R a d i a l t o be u sed j u s t f o r t h e 
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r eason ing p o r t i o n o f an a p p l i c a t i o n . The remainder o f the domain-
dependent code can be w r i t t e n i n whatever language i s most s u i t a b l e . 

E x t e r n a l code may be u sed t o o b t a i n i n p u t ( e . g . , f rom d a t a 
b a s e s , i n s t r u m e n t a t i o n , n u m e r i c a l d a t a base r o u t i n e s , o t h e r 
c o m p u t e r s ) , t o send o u t p u t ( t o d a t a b a s e s , p r i n t e r s , g r a p h i c 
d e v i c e s ) , o r t o p e r f o r m a c t i o n s when d e c i s i o n s a r e r e a c h e d ( e .g . , 
ins t rument c o n t r o l ) . The opera tors f o r u s e r - d e f i n e d da ta types w i l l 
u s u a l l y be implemented w i t h e x t e r n a l r o u t i n e s . 

A R u l e M a s t e r p rog ram may a l s o be s e t up t o be c a l l e d f rom 
a n o t h e r p rogram. By c o m b i n i n g s e v e r a l e x p e r t sys tems i n t h i s 
manner, a l a r g e a p p l i c a t i o n can be modeled as a se t o f coope ra t ing 
expe r t s . 

C Code G e n e r a t i o n . The p r i m a r y r e p r e s e n t a t i o n o f a R u l e M a s t e r 
e x p e r t s y s t e m i s as R a d i a l c o d e , much o f w h i c h i s g e n e r a t e d f rom 
example t a b l e s . The b u i l d i n g and t e s t i n g i s c a r r i e d ou t by 
i n t e r p r e t i n g t h i s R a d i a l program. The advantage o f i n t e r p r e t i n g i s 
speed o f development and support fo r i n t e r a c t i v e o p e r a t i o n . 

Once an a p p l i c a t i o n i s t e s t e d and f a i r l y s t a b l e , a n o t h e r 
d e l i v e r y mechanism i s a v a i l a b l e . The system can generate a C source 
code r e p r e s e n t a t i o n o f t h e e x p e r t s y s t e m . When c o m p i l e d and 
executed, the same behav io r as the i n t e r p r e t e d R a d i a l v e r s i o n o f the 
exper t system w i l l be e x h i b i t e d . 

There a re s e v e r a l reasons f o r u s i n g the C v e r s i o n o f an exper t 
s y s t e m . A l t h o u g h i n t e r p r e t e d R a d i a l i s a l r e a d y f a s t e r t h a n many 
e x p e r t s y s t e m a p p r o a c h e s , c o m p i l e d C i s f a s t e r s t i l l . F o r e x p e r t 
sys tems w h i c h ge t i n p u t s f rom i n s t r u m e n t a t i o n ( r a t h e r t h a n f rom a 
p e r s o n a t a k e y b o a r d ) and need t o r e s p o n d i n r e a l t i m e , t h i s speed 
may be e s s e n t i a l . Another advantage i s p o r t a b i l i t y . The C code may 
be compi l ed on computers o ther than the one on which the system was 
deve loped . The t h i r d advantage i s the s m a l l s i z e o f the compi l ed 
code . F o r l a r g e r a p p l i c a t i o n s , t h e c o m p i l e d o b j e c t code i s abou t 
one e i g h t h t h e s i z e o f t h e c o r r e s p o n d i n g r e s i d e n t code f o r t h e 
i n t e r p r e t e d v e r s i o n . Th i s a l l o w s exper t systems t o be d e l i v e r e d i n 
sys tems w i t h l i m i t e d c o m p u t i n g r e s o u r c e s , s u c h as embedded i n 
c h e m i c a l i n s t rumen ta t ion . 

E f f i c i e n c y . M u c h o f t h e c o m p u t e r r e s o u r c e r e q u i r e m e n t o f 
t r a d i t i o n a l p r o d u c t i o n r u l e expert systems i s used t o dec ide which 
r u l e s a r e l e g a l f o r f i r i n g a t each s t e p o f a c o n s u l t a t i o n . W i t h 
R u l e M a s t e r , t h i s pa r t o f the in fe rence engine job i s accompl i shed a t 
e x p e r t s y s t e m b u i l d i n g t i m e , r a t h e r t h a n a t e x e c u t i o n t i m e . F o r 
eve ry knowledge base and in fe rence engine combinat ion , t he re i s an 
e q u i v a l e n t p r o c e d u r a l r e p r e s e n t a t i o n . R a d i a l i s designed so t h a t 
t h i s p r o c e d u r a l r e p r e s e n t a t i o n can be determined a t system b u i l d i n g 
t ime , and p o i n t e r s between c o n d i t i o n a l b ranch ing statements are se t 
up a t t h a t t ime . Dur ing a s e s s i o n , i t i s o n l y necessary t o t r a v e r s e 
these r u l e p o i n t e r s . The execu t ion speed improvement r e s u l t i n g from 
r u l e c o m p i l a t i o n inc reases w i t h the s i z e o f the knowledge base. 

A s i d e e f f e c t o f t h i s a p p r o a c h i s t h e c o n s i s t e n c y a n d 
completeness check ing which i s performed a t b u i l d i n g t ime when the 
r u l e p o i n t e r s a re be ing se t up. E r r o r s and o v e r s i g h t s a re caught a t 
t h i s s tage and c o r r e c t e d before the i t e r a t i v e development c y c l e i s 
c o n t i n u e d . Mos t e x p e r t s y s t e m app roaches do no t s u p p o r t e r r o r 
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d e t e c t i o n o f t h i s t y p e and i n c o n s i s t e n c y and r edundancy i n t h o s e 
knowledge "bases are d i f f i c u l t t o d e t e c t . 

For even f a s t e r o p e r a t i o n , C code v e r s i o n s o f the exper t system 
may be u s e d . T h i s w i l l r e s u l t i n a t l e a s t an o r d e r o f magn i tude 
f a s t e r response over the i n t e r p r e t e d v e r s i o n . 

P o r t a b i l i t y . R u l e M a s t e r i s w r i t t e n i n t h e C l a n g u a g e , mak ing i t 
p o r t a b l e t o a wide range o f m i c r o - and mini-computers w i t h the UNIX, 
VMS, or PC-DOS o p e r a t i n g systems. By l a t e 1985, Ru l eMas t e r had been 
i n s t a l l e d on more than twenty brands o f computers, r ang ing i n s i z e 
from IBM PCs t o l a r g e min i -computers . 

TOGA: An Exper t System f o r Transformer F a u l t Diagnos is 

H a r t f o r d Steam B o i l e r I n s p e c t i o n and Insurance Company (HSB) insu res 
d i s t r i b u t i o n t ransformers f o r power g e n e r a t i o n u t i l i t y compan ies . 
The c o s t t o HSB when an i n s u r e d t r a n s f o r m e r f a i l s o f t e n exceeds a 
m i l l i o n d o l l a r s . The p o s s i b i l i t y o f l o s s e s o f t h i s magnitude has 
g i v e n HSB t h e i n c e n t i v e t o d e v e l o p a t r a n s f o r m e r f a u l t e a r l y 
d e t e c t i o n and d i agnos i s program, based on c h e m i c a l a n a l y s i s o f the 
t ransformer i n s u l a t i n g o i l . 

D i a g n o s t i c Approach. P o s s i b l e causes o f t ransformer f a i l u r e i n c l u d e 
g e n e r a l i n s u l a t i o n d e t e r i o r a t i o n , o v e r h e a t i n g due t o o v e r l o a d , 
s h o r t i n g a t f a i l e d j o i n t s , corona a c t i v i t y near i n s u l a t i o n , a r c i n g , 
and g rounded c o r e . E a c h f a i l u r e mode causes h e a t i n g o f t h e o i l , 
which may be l o c a l and in t ense o r widespread and moderate. The o i l 
decomposes when s u b j e c t e d t o h e a t , and some o f t h e d e c o m p o s i t i o n 
products a re gases which d i s s o l v e i n the o i l : hydrocarbon, carbon 
m o n o x i d e , c a r b o n d i o x i d e , a n d h y d r o c a r b o n s . The r e l a t i v e 
concen t ra t ions o f the v a r i o u s gases depends on the h e a t i n g h i s t o r y , 
and i s thereby r e l a t e d t o the cause o f f a i l u r e . The concen t ra t ions 
o f these gases can be a c c u r a t e l y measured w i t h gas chromatographs, 
and t h i s i n f o r m a t i o n used t o d i a g n o s e t h e cause o f an i n c i p i e n t 
breakdown p r i o r t o c a t a s t r o p h i c f a i l u r e . 

Diagnos ing a t ransformer ' s c o n d i t i o n from c h e m i c a l a n a l y s i s o f 
i t s o i l i s an exper t s k i l l which has been deve loped ove r the past 20 
y e a r s . I t i s r e l a t i v e l y easy t o f i n d s k i l l e d c h e m i s t s who c a n 
p r o v i d e t h e c h e m i c a l a n a l y s i s , b u t e x p e r t s who c a n d i a g n o s e a 
t ransformer ' s c o n d i t i o n from t h i s da ta a re r a r e . The d i agnos i s i s 
t y p i c a l l y based on a m i x t u r e o f s c i e n c e and h e u r i s t i c r u l e s 
deve loped from years o f exper ience . 

F u n c t i o n o f TOGA. An HSB e m p l o y e e , R i c h a r d I . Lowe, i s one o f t h e 
hand fu l o f t ransformer d i agnos i s exper ts i n the U.S. H i s r u l e s have 
been i nco rpo ra t ed i n an exper t system c a l l e d TOGA, which was b u i l t 
w i t h the Ru leMas t e r expert system b u i l d i n g package. 

The f u n c t i o n o f TOGA i s t o t r a n s f o r m t h e r e s u l t s o f c h e m i c a l 
a n a l y s i s , toge ther w i t h d e s c r i p t i v e i n f o r m a t i o n about a t ransformer , 
i n t o a d i agnos i s o f t ransformer c o n d i t i o n and a recommended a c t i o n . 
The r u l e s were c rea t ed by a process o f s u c c e s s i v e ref inement , u s i n g 
the HSB da ta base o f past t ransformer h i s t o r i e s as a source o f t e s t 
cases . 
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M o t i v a t i o n . TOGA con ta ins o n l y a s m a l l p o r t i o n o f the knowledge o f 
t h e e x p e r t and i t s p o t e n t i a l p e r f o r m a n c e i s l i m i t e d t o s o m e t h i n g 
l e s s than t h a t o f the exper t . However, t he re a re s t i l l a number o f 
reasons f o r b u i l d i n g the system. 

Document Exper t Techniques. R i c h a r d Lowe became an exper t by 
mak ing t housands o f d i a g n o s t i c d e c i s i o n s o v e r more t h a n 
t w e n t y y e a r s . Mos t r u l e s u sed i n t h i s d i a g n o s i s a r e 
h e u r i s t i c ( ra the r than based s o l e l y on theory) and they had 
not been w r i t t e n down v e r y w e l l by anyone. B u i l d i n g TOGA was 
an e f f e c t i v e method f o r e l i c i t i n g a c o n s i s t e n t , complete , and 
t e s t e d d e s c r i p t i o n o f the d i a g n o s t i c r u l e s . V a l u e r e s i d e s i n 
t h e w r i t t e n e x p r e s s i o n o f t h e r u l e s , and no t j u s t i n t h e 
computer program which executes them. 

T r a i n i n g . By u s i n g a d i a g n o s t i c s y s t e m b u i l t by an 
acknowledged exper t , n o v i c e s can q u i c k l y l e a r n t o diagnose 
t r a n s f o r m e r s by o b s e r v i n g d e c i s i o n s w h i c h a r e r e a c h e d and 
l i n e s o f reasoning . 

D i s t r i b u t e E x p e r t i s e . TOGA a l l o w s n o v i c e s t o p e r f o r m as 
e x p e r t s a t c h e m i s t r y l a b o r a t o r i e s a n d u t i l i t y s i t e s , 
e s p e c i a l l y f o r t h e s i m p l e r and more p r e v a l e n t s i t u a t i o n s 
covered by the r u l e s . 

C o n s i s t e n c y . TOGA can be u sed t o i n s u r e t h a t t h e same 
d i agnos i s and recommendation i s made fo r the same t ransformer 
da ta a t a l l l o c a t i o n s and t imes . Thus, i t can be a t o o l f o r 
b o t h i n f o r m i n g o f i m p l e m e n t i n g s t a n d a r d d i a g n o s t i c 
procedures . 

Automate Dec i s ion-making Process . For d a i l y o p e r a t i o n , TOGA 
i s run a u t o m a t i c a l l y from gas chromatograph output and data 
bases (as opposed t o i n t e r a c t i v e l y ) t o g e n e r a t e e x p e r t 
i n t e r p r e t a t i o n o f d a t a , t h i s speeds up t h e d a t a a n a l y s i s 
t a s k and removes t h e e l e m e n t o f human e r r o r f rom r o u t i n e 
d iagnoses . 

A i d E x p e r t W i t h Complex D e c i s i o n s . TOGA h e l p s p reven t the 
judgment m i s t a k e s w h i c h c a n o c c u r when r a r e t r a n s f o r m e r 
c o n d i t i o n s a re encountered or when exper ts a re fo rced t o make 
a h u r r i e d d i a g n o s i s . 

V a l i d a t i o n . TOGA was v a l i d a t e d by comparing i t s diagnoses t o those 
p r e v i o u s l y made by the expert who s u p p l i e d the r u l e s . A se t o f 859 
t e s t c a se s f rom a h i s t o r i c a l d a t a base were u s e d . The d a t a base 
c o n t a i n e d t h e gas a n a l y s i s r e s u l t s , t r a n s f o r m e r d e s c r i p t i v e 
i n f o r m a t i o n , and t h e e x p e r t ' s d e t a i l e d d i a g n o s e s ( w h i c h had been 
p r e p a r e d s e v e r a l y e a r s b e f o r e TOGA was b u i l t ) . None o f t h e ca se s 
were used i n r u l e c o n s t r u c t i o n . 

The c o m p a r i s o n ( T a b l e I ) shows t h a t t h e e x p e r t s y s t e m i s an 
e x c e l l e n t r e p r e s e n t a t i o n o f the e x p e r t ' s dec i s ion -mak ing p rocess . 
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Table I . TOGA V a l i d a t i o n Resu l t s 

TOGA and E x p e r t : 
Transformer 
C o n d i t i o n Agreed Disagreed 

No Problem 651 0 

Problem 20k k 

One w o u l d a l s o l i k e t o compare t h e d i a g n o s e s w i t h t h e a c t u a l 
t r a n s f o r m e r c o n d i t i o n , and no t j u s t w i t h t h e e x p e r t ' s p r e v i o u s 
a s sessment o f t h e c o n d i t i o n . U n f o r t u n a t e l y , t h i s i s u s u a l l y no t 
p o s s i b l e , i t i s e x p e n s i v e t o remove a t r a n s f o r m e r f rom s e r v i c e , 
open i t up, and determine i t s c o n d i t i o n . However, t h i s was done fo r 
t e n o f t h e 208 " p r o b l e m " c a s e s . E n g i n e e r s o v e r h a u l e d t h e s e 
t ransformers and determined the na ture and cause o f t h e i r problems. 
F o r a l l t e n o f t h e s e c a s e s , b o t h t h e e x p e r t s y s t e m and t h e e x p e r t 
had made the c o r r e c t d i a g n o s i s . 

O p e r a t i o n a l Use . TOGA i s u sed d a i l y by c h e m i s t s i n R a d i a n ' s 
a n a l y t i c a l l a b o r a t o r y t o s c r e e n t h e a n a l y t i c a l r e s u l t s f o r 
i n d i c a t i o n s o f p o s s i b l y f a u l t y t ransformers . Th i s h e l p s i n s u r e t h a t 
HSB c a n t a k e q u i c k a c t i o n when i t i s n e c e s s a r y , and a l s o h e l p s 
Radian 's chemists l e a r n the r e l a t i o n s h i p between v a r i o u s hydrocarbon 
gas concen t ra t ions and the t ransformer c o n d i t i o n . A t HSB, TOGA i s 
a l s o used t o d i a g n o s e t r a n s f o r m e r s and p r e p a r e r e p o r t s , w h i c h a r e 
sent t o the t ransformer owner a f t e r be ing v e r i f i e d by the exper t . 

U s i n g RuleMaster 

K n o w l e d g e E x t r a c t i o n . E x p e r t sys tems a r e u s u a l l y u sed t o s o l v e 
h a r d p r o b l e m s f o r w h i c h t h e s o l u t i o n m e t h o d o l o g y i s n o t 

documented. An e x p e r t i s a p e r s o n who c a n p r o v i d e t h e h i g h e s t 
q u a l i t y answers or a d v i c e f o r a s p e c i f i c problem domain. Un le s s the 
exper t r o u t i n e l y teaches the p r o b l e m - s o l v i n g method, he or she w i l l 
p robably have d i f f i c u l t y i n c l e a r l y d e s c r i b i n g the method. 

Ru leMas te r p r o v i d e s an example-based knowledge inpu t mechanism 
which p r a c t i c i n g exper ts f i n d comfor table t o use . 

For TOGA, a topr-down procedure was used t o beg in the knowledge 
e x t r a c t i o n p r o c e s s . The e x p e r t was i n t e r v i e w e d t o d e t e r m i n e t h e 
t e r m i n o l o g y and t h e c o a r s e f ramework o f t h e s o l u t i o n method. He 
s e l e c t e d a se t o f kO t ransformer t e s t cases t o j o g the memory d u r i n g 
t h e e x p e r t s y s t e m b u i l d i n g p r o c e s s . Then a l i s t o f p o s s i b l e t o p -
l e v e l d e c i s i o n s or a c t i o n s was generated t o de f ine the scope o f the 
exper t system. Th i s c o n s i s t e d o f the l i s t o f p o s s i b l e diagnoses (no 
problem, corona, a r c i n g , . . .) and the l i s t o f recommendations (no 
a c t i o n , resample a t s p e c i f i e d t ime , remove t ransformer from s e r v i c e , 
. . . ) 

Then t h e e x p e r t was a s k e d abou t t h e f a c t o r s u sed t o a r r i v e a t 
each d e c i s i o n . Sometimes the f ac to r s were raw da ta a v a i l a b l e from 
the gas chromatograph, and sometimes the f a c t o r s were in t e rmed ia te 
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28 ARTIFICIAL INTELLIGENCE APPLICATIONS IN CHEMISTRY 

a t t r i b u t e s y e t t o be de f ined ( l i k e presence or absence o f t h e r m a l l y 
g e n e r a t e d h y d r o c a r b o n g a s e s ) . Whenever new q u a n t i t i e s were 
i n t roduced , the expert was asked about the f ac to r s used t o determine 
i t . T h i s p r o c e s s was r e p e a t e d r e c u r s i v e l y u n t i l e v e n t u a l l y t h e 
e n t i r e s o l u t i o n was de sc r ibed i n terms o f chromatograph da t a . 

A t t h i s p o i n t , t he re was enough i n f o r m a t i o n toge ther t o b u i l d a 
f i r s t p ro to type . Each i n t e r m e d i a t e o r f i n a l c o n c l u s i o n d e f i n e d a 
d e c i s i o n module. These modules were o rgan ized i n t o a h i e r a r c h i c a l 
s t r u c t u r e . W i t h i n each m o d u l e , example t a b l e s t r u c t u r e s were 
c r e a t e d . Based on t h e i n t e r v i e w i n g r e c o r d s , a f i r s t c u t a t t h e 
example se t s was entered. A t t h i s p o i n t , a runn ing pro to type exper t 
system e x i s t e d . 

The v a l u e o f t h i s a p p r o a c h i s t h a t a r u n n i n g e x p e r t s y s t e m i s 
r a p i d l y c r ea t ed , wi thout f o r c i n g the exper t t o a r t i c u l a t e a g e n e r a l 
p r o b l e m - s o l v i n g p r o c e d u r e . The p ro to type system i s a v a i l a b l e f o r 
t h e i t e r a t i v e k n o w l e d g e r e f i n e m e n t p r o c e s s , w h i c h draws ou t more 
d e t a i l s o f t h e d e c i s i o n - m a k i n g p r o c e d u r e f rom t h e e x p e r t t o 
g r a d u a l l y b u i l d a complete and t e s t e d exper t system. 

K n o w l e d g e R e f i n e m e n t . The f i r s t p r o t o t y p e i s o n l y a r o u g h 
approximat ion o f the exper t ' s d e c i s i o n s t r a t egy . Many d e t a i l s a re 
m i s s i n g . R e f i n e m e n t o f t h e p r o t o t y p e i s a c c o m p l i s h e d by a 
c o n t i n u a t i o n o f example-based l e a r n i n g s t e p s . 

F o r TOGA, t h e hO t e s t ca ses formed t h e b a s i s o f k n o w l e d g e 
r e f i n e m e n t . The p r o t o t y p e was e x e r c i s e d f o r each c a s e . Wrong 
a d v i c e , o r c o r r e c t a d v i c e reached f o r the wrong reasons , i n d i c a t e d 
the need fo r changes t o the knowledge base. Whenever one o f these 
e r r o r s was e n c o u n t e r e d , t h a t t e s t c a s e was s t e p p e d s l o w l y t h r o u g h 
t h e p r o t o t y p e e x p e r t s y s t e m a g a i n . The p o i n t where t h e p r o t o t y p e 
r e a s o n i n g d i f f e r e d w i t h t h e e x p e r t ' s r e a s o n i n g s p e c i f i e d e x a c t l y 
where the knowledge base needed t o be changed. 

Wi th the problem l o c a l i z e d i n the module h i e r a r c h y , the f i x i s 
easy . U s u a l l y , i t r e q u i r e d a d d i n g a s i n g l e example ( m a t c h i n g t h e 
t e s t case) or c o r r e c t i n g an e x i s t i n g example. Sometimes the e r r o r 
p o i n t e d ou t t h e need f o r more d e t a i l , as when two d i f f e r e n t 
c o n c l u s i o n s c o u l d be reached f o r the same example v e c t o r s . I n these 
cases , the exper t was asked t o p r o v i d e a new a t t r i b u t e , which c o u l d 
d i s t i n g u i s h be tween t h e two c o n c l u s i o n s . On r a r e o c c a s i o n s , t h e 
exper t and knowledge engineer n o t i c e d t h a t the module h i e r a r c h y no 
longe r seems s u i t a b l e . Th i s suggests a p o s s i b l e r e - o r g a n i z a t i o n o f 
the module s t r u c t u r e . 

L e a r n i n g f rom examples i s e s p e c i a l l y e f f e c t i v e because t h e 
knowledge r e p r e s e n t a t i o n ( i n the form o f example t a b l e s ) i s c l o s e t o 
t h e way t h a t e x p e r t s n o r m a l l y t h i n k abou t t h e i r f i e l d . The 
t r a n s l a t i o n f rom t h e e x p e r t ' s n o t a t i o n t o a more a b s t r a c t r u l e 
language i s done by the i n d u c t i v e l e a r n i n g a l g o r i t h m . Not o n l y can 
knowledge be generated and t e s t e d e f f e c t i v e l y i n the form o f example 
s e t s , bu t c o l l e a g u e s i n t h e f i e l d o f e x p e r t i s e w i l l be a b l e t o 
e a s i l y and t h o r o u g h l y understand the r eason ing i nco rpo ra t ed i n the 
system. 

Programming S k i l l s . One o f the f i r s t s teps i n b u i l d i n g Ru leMas te r 
e x p e r t s y s t e m i s c r e a t i n g t h e modu le h i e r a r c h y f o r t h e p r o t o t y p e . 
Th i s r e q u i r e s s k i l l i n top-down des ign and s t r u c t u r e d programming. 
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2. RIESE A N D STUART A Know ledge-Engineering Facility 29 

P e o p l e w i t h o u t some c o u r s e work and e x p e r i e n c e i n t h e s e computer 
s c i e n c e d i s c i p l i n e s t e n d t o make m i s t a k e s and f l o u n d e r a t t h i s 
s t age . 

For the m a j o r i t y o f t he i t e r a t i v e ref inement p rocess , however, 
o n l y min ima l computer s k i l l s a re r e q u i r e d . The modules a re s m a l l 
enough so t h e i r l o g i c can be e a s i l y u n d e r s t o o d by anyone f a m i l i a r 
w i t h t h e a p p l i c a t i o n . Changes a r e u s u a l l y l i m i t e d t o e d i t i n g 
examples, and the example o r d e r i n g i s not important . The i n d u c t i v e 
l e a r n i n g a l g o r i t h m a u t o m a t i c a l l y takes ca re o f c o n t r o l f l o w . Most 
o f k n o w l e d g e r e f i n e m e n t c a n be done by anyone who knows a l i t t l e 
e d i t i n g and f i l e management. Th i s i s o f t en the exper t h i m s e l f . 

T h e r e f o r e , a d d i t i o n a l programmers w i t h h i g h l y s p e c i a l i z e d 
s k i l l s a re not r e q u i r e d t o add an exper t r eason ing c a p a b i l i t y t o an 
e x i s t i n g computer program. The programmers a l r e a d y on the p r o j e c t 
c a n a l s o b u i l d t h e e x p e r t s y s t e m . Not o n l y does t h i s s a v e money, 
bu t t h e s e p e o p l e u n d e r s t a n d t h e p r o b l e m and a r e l i k e l y t o do a 
b e t t e r job than someone whose pr imary i n t e r e s t l i e s e lsewhere. 

C o n c l u s i o n s . TOGA i s an exper t system b u i l t w i t h Ru leMas t e r which 
has been v a l i d a t e d and i s i n d a i l y u se . The p r i m a r y b e n e f i t f rom 
b u i l d i n g TOGA i s t h a t t h e t r a n s f o r m e r d i a g n o s t i c k n o w l e d g e now 
e x i s t s i n a fo rm w h i c h c a n be used t o pass t h e s k i l l on t o a new 
g e n e r a t i o n o f e n g i n e e r s . HSB w i l l n o t l o s e i t s t r a n s f o r m e r 
d i a g n o s i s c a p a b i l i t y when t h e c u r r e n t e x p e r t r e t i r e s . O the r 
employees c a n use t h e e x p e r t s y s t e m t o d i a g n o s e t r a n s f o r m e r s , o r 
t h e y can l e a r n t h e t e c h n i q u e by s t u d y i n g a w r i t t e n v e r s i o n o f t h e 
knowledge base. 

Other a p p l i c a t i o n s b u i l t w i t h R u l e M a s t e r demonstrate a d d i t i o n a l 
reasons f o r b u i l d i n g exper t systems. 

WILLARD (3) i s a seve re storms f o r e c a s t i n g exper t system which 
can o b t a i n a l l i npu t da ta from N a t i o n a l Weather S e r v i c e da ta l i n e s . 
When seve re s torm s i t u a t i o n s occur , f o recas t e r s become v e r y busy and 
do no t h a v e t i m e t o u t i l i z e a l l t h e d a t a w h i c h i s a v a i l a b l e . The 
exper t system can t ake ove r the r o u t i n e p o r t i o n o f the f o r e c a s t i n g , 
l e a v i n g the exper ts f ree t o focus on the more d i f f i c u l t and c r i t i c a l 
p o r t i o n s o f t he a n a l y s i s . 

TURBOMAC 0 0 diagnoses f a u l t s i n l a r g e r o t a t i n g machinery, such 
as power g e n e r a t i o n t u r b i n e s . T h i s e x p e r t s y s t e m a l l o w s f i e l d 
engineers t o i nco rpo ra t e the r eason ing o f one o f the t op exper ts i n 
v i b r a t i o n d i agnos i s i n t h e i r maintenance and o p e r a t i o n a l d e c i s i o n s . 

G l o v e A I D (5.) p r e d i c t s t h e most e f f e c t i v e g l o v e m a t e r i a l s t o 
choose f o r p r o t e c t i o n a g a i n s t haza rdous c h e m i c a l s . The re a r e no 
e s t a b l i s h e d e x p e r t s i n t h i s f i e l d , because much o f the p r o t e c t i o n 
e f f e c t i v e n e s s measurements a r e j u s t now b e i n g p e r f o r m e d . The 
i n d u c t i v e l e a r n i n g aspect o f Ru leMas te r i s used t o h e l p o rgan ize the 
date which i s a v a i l a b l e and t o suggest which measurements s h o u l d be 
performed nex t . 

The o b j e c t i v e o f Q u a l A I D i s t o p r o v i d e a d v i c e on how much 
and what type o f q u a l i t y assurance (QA) and q u a l i t y c o n t r o l (QC) i s 
needed fo r v a r i o u s types o f env i ronmen ta l ana ly se s . The purpose o f 
t h i s system i s t o p r o v i d e c o n s i s t e n t l y good a d v i c e t o chemists whose 
pr imary f i e l d o f e x p e r t i s e i s o ther than QA/QC. 
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3 
A Rule-Induction Program 
for Quality Assurance-Quality Control and Selection 
of Protective Materials 

L. H. Keith and J. D. Stuart 

Radian Corporation, Austin, TX 78766-0948 

This chapter describes two prototype expert systems 
for chemical applications being developed using Rule
Master. (1) The first, QualAId, is a traditional type 
of system where knowledge on how much and what type of 
quality assurance (QA) and quality control (QC) is 
needed for various types of environmental analyses. 
The second, GloveAId, is being developed to help 
select the best glove material(s) for protection 
against a wide variety of hazardous chemicals. 
However, unlike the former example, the knowledge base 
for selecting the best glove materials is not yet 
known. Therefore, experimental data is being sub
jected to the rule-induction process of RuleMaster and 
the resulting correlations are examined and tested to 
help formulate the rules which are, in turn, used to 
build the expert system. 

QualAId 

The prototype of QualAId currently i n existence i s one small part of 
the t o t a l framework needed for a useful expert system. The objec
tive of QualAId i s to provide advice on how much and what type of 
QA/QC i s needed for various types of environmental analyses. The 
rules for determining these needs have been derived from the Ameri
can Chemical Society (ACS) publication, "Principles of Environmental 
Analysis," (2) and from various protocols and recommendations of the 
U.S. Environmental Protection Agency (EPA). 

This particular demonstration module only incorporates deci
sions involving analysis of v o l a t i l e and semivolatile organic 
compounds from water. These compounds are, by def i n i t i o n , v o l a t i l e 
enough to be separated by gas chromatography (GC). The complete 
expert system w i l l incorporate decisions based upon any type of 
chemical i n any type of matrix and w i l l also be capable of providing 
advice s p e c i f i c a l l y for selected EPA methods commonly i n use, i.e., 
EPA Methods 624, 625, 1624, 1625, the various non-mass spectrometric 
600 Methods, etc. (Figure 1). 

0097-6156/ 86/ 0306-0031 $06.00/ 0 
© 1986 American Chemical Society 
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Litigation 

Yes 

No Q A / Q C 

Importance 

high 

M medium 

low 

sampleAId 
^ Routine . 

/ \ 
Advice J 

f methodAId 
Routine J 

Inorganic \ 
" * \ Routine .' 

y • ( Advice j 

Advice I 

• I " e Θ A d v i C e ) 

^ " ^ ^ V 
• Specific \ f * 

Methods ι • Advice ) 
\ Routine ' \ y 

Figure 1a. Diagram of Modules for QualAId Expert System ( f i r s t 
hal f ) . 
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KEITH A N D STUART A Rule-Induction Program for QA-QC 

Determine Extent of 
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Figure 1b. Diagram of Modules for QualAId Expert System (second 
hal f ) . 
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The purpose of this expert system i s to provide consistently 
good advice i n both the types and amounts of QA/QC to use. There 
are many decisions to make and errors are very expensive i n terms of 
time and money. 

The expert system i s comprised of a series of modules encompas
sing the many varied aspects of decision-making. Information from 
each of these modules i s available to other modules to make deci
sions where they require interrelated knowledge. 

For example, the f i r s t module. Confidence Level, i s key to many 
of the decisions that w i l l be made i n other modules. The f i r s t 
query by the computer asks the user whether the resulting analytical 
data w i l l be used for enforcement or l i t i g a t i o n actions. I f the 
answer i s "yes," then a high lev e l of confidence w i l l be needed and 
the user i s advised of this assignment. If the answer i s "no," then 
the user i s asked to specify how important he/she views the accuracy 
and precision of the data. 

Routines awaiting future development w i l l provide advice on the 
best analytical methodology and sampling procedures, QA/QC needs for 
inorganic, nonvolatile organic, and selected methodologies (Figure 
1). For the present system, these are skipped and the routine for 
general QA/QC advice for v o l a t i l e organics i n water i s entered. 

The second module. Method, involves determining the level of 
v e r i f i c a t i o n and validation to which the user's methodology has been 
subjected. V e r i f i c a t i o n i s the general process used to decide 
whether a method i n question i s capable of producing accurate and 
rel i a b l e data. Validation i s an experimental process involving 
external corroboration by other laboratories (internal or external) 
of methods or the use of reference materials to evaluate the s u i t 
a b i l i t y of methodology (1). A menu of choices includes: (1) the 
method has only been v e r i f i e d , (2) the method has been both v e r i f i e d 
and validated, or (3) the method has been neither v e r i f i e d or 
validated. 

The t h i r d module. Samples, queries the user for how many 
samples w i l l be taken and the fourth. Cone ent rat ion, for the expec
ted range of probable concentration values. The choices of probable 
concentration values are: (1) high [ > 10,000 parts-per-billion 
(ppb) ]; (2) Medium [10-10,000 ppb] ; or (3) Low [< 10 ppb]. The 
f i f t h module, Detector, queries the user for the detector that w i l l 
be used i n conjunction with the GC analysis (Figure 2). 

The information from these fiv e modules i s then used to provide 
a series of advisory statements relating to whether the user w i l l or 
w i l l not meet the stated confidence levels and, i f not, what the 
options are. 

Figure 3 i s the resulting advice for an example of a good QA/QC 
match with the user's needs. In this example, a high lev e l of 
confidence was established, the methodology was both v e r i f i e d and 
validated, two samples were to be taken and analyzed by gas chroma-
tography-mass spectrometry (GC-MS) at levels below 10 parts-per-
b i l l i o n (ppb). These conditions might be typical of analyses for 
2»3,7,8-Tetrachloro-£-dioxin (TCDD) i n polluted water. 
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We need to establish what instrument you plan to use for the analysis. 

Since the compound(s) you are analyzing are sufficiently volati le to be 

separated by gas chromatography, I am assuming that you will use a GC for 

your separations. Here are the detector choices we have to consider: 

a = Mass spectrometer (general purpose) 

b = Hall detector (in the halogen, nitrogen or sulfur mode) 

c = Flame photometric detector (for phosphorous) 

d = Photo Ionization detector (for olefins and aromatlcs) 

e = Electron capture detector (for pesticides, halogens, etc.) 

f = Flame ionization detector (general purpose) 

Choose one of these by typing the corresponding menu letter: [a ,b ,c ,d ,e , f ] a 

F i g u r e 2. Quer ies f o r the Module D e t e c t o r . 
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GloveAId 

GloveAId i s an expert system being developed for the National Toxi
cology Program, I t has been programmed to choose from seven glove 
materials the one most l i k e l y to provide the greatest protection at 
the cheapest cost against a variety of chemicals. Chemical input i s 
selected by choosing one of seventeen chemical classes. Glove 
t a c t i l i t y needs and the desired amount of protection (in units of 
minutes) are also input. The computer provides advice as to the 
probable best glove to select and, i f none meet requested c r i t e r i a , 
i t advises the best choice i t has available and explains the l i m i t a 
tions of that choice with respect to the users request. Factors 
used i n making the decisions include: chemical class, molecular 
weight, v o l a t i l i t y (boiling point), reaction with glove materials 
(weight change), t a c t i l i t y and glove cost. 

The prototype GloveAId system was developed using a data base 
generated from chemical permeation measurements performed at Radian. 
Experimental data from these tests were entered into a LOTUS-1-2-3 
spreadsheet and sorted by a l l c l a s s i f i a b l e respects i n order to make 
visual correlations with the protective character of seven different 
glove materials. The data base consisted of 90 chemicals with 
associated physical properties (molecular weight, boiling point and 
l i n e a r i t y of the molecule), chemical class and measurements of 
breakthrough times, steady-state permeation rate and degradation 
characteristics. The l a t t e r consisted of percent weight change when 
a piece of the material was immersed i n the test chemical for four 
hours. Each of the chemicals was tested against a l l seven glove 
materials for weight change but only against four of the glove 
materials for breakthrough and permeation rate data so that 1,300 
measured values and 540 associated pieces of information were 
available. Visual correlation of this data produced the protective 
rating approximations l i s t e d i n Table I. 

I t i s time consuming and d i f f i c u l t for humans to make visual 
comparisons of a numerical data set and draw the simplest possible 
correlations between them; the larger the data set, the more d i f f i 
cult this i s to do. A l o t of time and effort was expended to make 
the approximate evaluations l i s t e d i n Table I. When the data set i s 
a dynamic one, i . e . , i t i s changing due to the addition of new data, 
i t simply adds to this problem. However, one strength of computer 
usage i s that such tasks can be performed with ease and, when this 
capability i s coupled to the a b i l i t y to induce correlations or 
"rules" from a data set, an extremely powerful tool for evaluating 
data i s created. This second way of evaluating the data i s cur
rently being pursued and i s described i n more detail i n the next 
section. 

The ratings i n Table I are based only on the safety aspects of 
the glove materials; i . e . , protection from exposure to chemicals as 
indicated by the majority of breakthrough times observed within the 
members of a chemical class. However, t a c t i l i t y i s often an addi
tional important ergonomie factor; i t i s impossible to perform 
delicate tasks with thick, bulky gloves. T a c t i l i t y of the gloves 
was rated subjectively using a dime. I f the features of a dime 
could be readily f e l t through the glove, i t was assigned a rating of 
"very good." If the features were not very distinguishable through 
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40 ARTIFICIAL INTELLIGENCE APPLICATIONS IN CHEMISTRY 

the glove, but the dime could be easily picked up from a f l a t 
surface, i t was assigned a "moderate" rating. I f the dime was 
picked up with d i f f i c u l t y from a f l a t surface, the rating of the 
glove was "poor." 

F i n a l l y , the approximate costs of gloves from the seven materi
als were also considered. A l l of this information was provided to 
the computer with rules for p r i o r i t i z i n g the choices, i . e . , safety 
f i r s t , t a c t i l i t y second, and cost t h i r d . 

An introductory screen i s printed after log-on into GloveAId. 
This i s followed by a menu from which the chemical class i s chosen. 
Multiple functional groups cannot be handled by the system yet. The 
user i s then queried for the amount of time that the glove needs to 
provide protection. This i s followed by a request for the t a c t i l i t y 
requirements of the user. 

The f i n a l screen summarizes the answers given to the computer 
and provides the best advice possible from the information and rules 
supplied (Figure 4). In this example, there were no gloves that met 
the user's needs, so the computer provided the next best choices. 
The recommended materials are a moderately t a c t i l e ( n i t r i l e ) glove 
with probable short protection time or a thick (butyl rubber) glove 
with poor t a c t i l i t y but probable good protective properties. When 
safety and t a c t i l i t y requirements can be met, then the most cost-
effective choice i s provided. 

This prototype expert system i s currently being tested by 
comparing the GloveAId predictions before a chemical i s tested with 
the best gloves after their performance has been documented. To 
date, 62 additional chemicals have been tested. F i f t y - s i x (56) of 
these (90%) had one or more gloves correctly predicted by the expert 
system. Although this i s good for a prototype system, we are 
st r i v i n g to improve the percentage of t o t a l choices. Often, more 
than one glove material w i l l have very good breakthrough protection. 
For example, with the 62 chemicals, there were a t o t a l of 132 gloves 
with good performance. The expert system correctly advised only 60 
of these (45%). 

Rule Induction 

The easiest way to describe the rule induction capa b i l i t i e s of Rule-
Master i s to demonstrate i t s use with a relevant set of data. This 
data consists of information on a series of nonhalogenated aromatic 
compounds which were tested with f i v e different glove materials. An 
arbitrary protective rating was assigned to each test based on the 
following breakthrough times: 

Protective Rating Breakthrough Time 

Very Poor 
Poor 
Fair 
Good 
Best 

<5 min. 
5 - <15 min. 
15 - <100 min. 
100 - <200 min. 
> = 200 min. 

Readily available information for each of the compounds consisted of 
molecular weight and boi l i n g point. In addition, the compounds were 
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KEITH A N D STUART A Rule-Induction Program for QA-QC 

The specific glove and protection requirements are: 
Chemical type Is aldehyde 
Protection time requirement In minutes Is 200 
Tacti l i ty requirement Is moderate tact i le 

There are no glove materials In the data base 
meeting the requirements that you specified. The 
closest are: 

Nltr l le 
Approximate cost Is $3.00 per pair of gloves. 
Protection time Is probably greater than 5 minutes 
Tacti l i ty Is moderately tacti le 

Butyl Rubber 
Approximate cost Is $10.00 per pair of gloves. 
Protection time (s probably greater than 200 minutes 
Tacti l i ty Is not tacti le 

Figure 4 . Example of Summary and Advice from GloveAId When User 
Needs Are Not Met. 
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42 ARTIFICIAL INTELLIGENCE APPLICATIONS IN CHEMISTRY 

assigned a linear (1) or non-linear (0) shape. In this example a l l 
compounds were assigned (0) for shape designation since aromatic 
compounds are not linear. Other measured data included the steady 
state permeation rate and percent weight gain or loss. The permea
tion rate usually exhibits the reverse trend as the breakthrough 
time ( i . e . as breakthrough time increases the permeation rate 
usually decreases). Therefore, permeation rates were not included 
i n the data set since they seldom result i n a different relative 
protective rating than would be derived from breakthrough times. 
However, weight gain or loss i s a good indication of a chemical 
either reacting with the protective material or being absorbed into 
i t . 

RuleMaker, a subsystem of RuleMaster, induces rules for a l l 
situations from examples that may cover only some of the cases. At 
the heart of the induction process i s the creation of an induction 
f i l e , which i n part includes examples indicating what the expert 
system should do under different circumstances. Now, i n the example 
above. THE RULES FOR CORRELATING VARIOUS CHEMICAL AND PHYSICAL 
PARAMETERS OF THE HAZARDOUS CHEMICALS TESTED WITH THE PROTECTIVE 
ABILITY OF THE SELECTED GLOVE MATERIALS ARE NOT KNOWN — THEY WILL 
HAVE TO BE INDUCED FROM THE ANALYTICAL DATA. 

The RuleMaster induction f i l e produced from the example data 
set i s shown i n Figure 5 . The name given to this induction f i l e 
module i s "ClasslO". The STATE i n a module i s essentially the name 
of sub-modules that w i l l carry out actions within a module. In this 
simple example there are no sub-modules so the name given to the 
state i s "only". 

The CONDITIONS section of the module i s comprised of descrip
tions of the various parameters upon which a decision w i l l be based. 
Each l i n e i n the conditions section i s made up of three parts: 

• the name of the decision parameter (for example, glove, 
molecular weight, etc.) 

• the specified method of determining the parameters value 
(for example the statement "integer.read What i s the 
molecular weight?" means the computer w i l l display that 
question and w i l l expect a numerical answer from the 
user); this part i s denoted using square brackets, and 

• the allowable values for the parameter. However, i n this 
case we don't know what the allowable values for the para
meter are so any value i s allowed by typing the word 
"integer". Later, after rules have been defined and the 
allowable values are known, they can be used to replace 
any integer. This w i l l be an important part of the second 
phase when the expert system i s refined to include this 
knowledge. 

The experimental data i n this i l l u s t r a t i o n comprise the actual 
rule base for RuleMaker. The f i r s t column of data i n the EXAMPLE 
section of Figure 5 consists of the glove material tested. The 
second column of data consists of the molecular weights, and the 
thi r d column consists of the b o i l i n g points i n degrees centigrade. 
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3. KEITH A N D STUART A Rule-Induction Program for QA-QC 43 

/· 
CLASSι AROMATIC NOT HALOGENATED 
·/ 

MODULE! c l a s a l O 

STATEt o n l y 
CONDITIONS: 

glo v e [ask "What 1· the glove t y p e ? " 
NButyl_Rubbor vN«oproni vN1trUo»PVA vPVC vV1ton n] 
[ B u t y l j f c i b b e r Neopreno N l t r l l e PVA PVC Vito n } 

• o l w t [ I n t e g e r . r o a d "What l a the Molecular weight?"] I n t e g e r 
b o l l p t [ I n t o g o r . r o a d "What 1a the b o i l i n g p o i n t ? " ] I n t e g e r 
shape [ I n t e g e r . r e a d "Whet I s the shape?"] I n t e g e r 
change [ I n t e g e r . r e e d "Whet l e the pe r c e n t change?"] I n t e g e r 

EXAMPLESι 
Butyl_Rubber 130 185 0 56 «>lgood,G0AL) 
B u t y l j t a b b e r 106 144 0 180 »>(fair,GOAL) 
B u t y l j f a i b b e r 106 138 0 181 »>[fe1r,GQAL) 
B u t y l j t u b b e r 106 136 0 80 »>(fair,GOAL) 
B u t y l j t u b b o r 106 133 0 188 »>{fe1r fGQAL) 
Neoprene 148 183 0 64 =>[feir,G0AL) 
N 1 t r 1 l e 148 183 0 11 »(best,G0AL) 
N H M l e 106 136 0 95 =>(fair,GOAL) 
N 1 t r 1 l o 106 144 0 60 *>tpoor,G0AL) 
N l t r l l e 78 80 0 58 =>(fair,GOAL] 
N 1 t r 1 l e 106 138 0 77 s>(fa1r,GQAL) 
N l t r l l e 106 138 0 82 «>(fa1r,G0AL) 
N l t r l l e 130 185 0 63 =>(fair,GOAL] 
PVA 130 185 0 62 =>[best,GOAL) 
PVA 148 183 0 0 =>{beet tGQAL) 
PVA 106 138 0 3 =>(beet,G0AL) 
PVA 106 144 0 0 =>[best fGQAL] 
PVA 106 136 0 0 =>(fair,GOAL] 
PVA 78 80 0 0 =>(fa1r,G0AL) 
PVA 106 138 0 0 =>{best fG0AL) 
PVC 78 80 0 40 => (νery_poor,GOAL) 
PVC 106 138 0 8 =>(ve ry_poo r » GOAL) 
V i t o n 106 138 0 1 =>(beet,GOAL) 
V i t o n 106 138 0 1 =>(best,G0AL) 
V i t o n 148 183 0 0 =>[best fG0AL) 
V i t o n 78 80 0 3 =>(baet,G0AL) 
V i t o n 130 195 0 0 =>(beet,GQAL) 
V U o n 106 136 0 0 =>(ba8t,G0AL) 
V i t o n 106 144 0 1 =>(beet,G0AL) 

ACTIONS: 
best [ a d v i s e " T h i s g l o v e has a * b e s t * r a t i n g . " ] 
good [ a d v i s e " T h i s glove has β *good* r a t i n g . " ) 
f a i r [ a d v i s e " T h i s g l o v e has a * f a i r * r a t i n g . " ] 
poor [ a d v i s e " T h i s glove hes e •poor* r a t i n g . " ] 
veryj>oor [ a d v i s e " T h i a glove hat a *very poor* r a t i n g . " ] 

Figure 5 . Induction Module for Nonhalogenated Aromatic 
Compounds. The symbol => means "then". 
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44 ARTIFICIAL INTELLIGENCE APPLICATIONS IN CHEMISTRY 

The fourth column pertains to the designation of a non-linear shape 
(0 ) , and the l a s t column of data l i s t s the percent change i n weight 
gain or loss when the material i s soaked i n the test chemical for 4 
hours. The data within a row i s associated with a specific compound 
but the compounds were l i s t e d i n random order within a glove materi
a l group i n order to emphasize an important feature of RuleMaker — 
that information (data) can be entered as i t i s thought of. This i s 
an extremely important (and powerful) difference between RuleMaster 
and other a r t i f i c i a l intelligence programs which are written i n a 
highly structured int e r r e l a t i v e fashion. The powerful inductive 
logic of RuleMaker enables this l i m i t a t i o n to be ignored and this 
frees the user to add, change, or delete example data which i n f l u 
ence the rulemaking logic easily and at w i l l . This feature i s very 
important when working with a growing/ changing data base. 

The part of the example to the right of the arrow (=>), i s an 
action-next-state-pair. I t indicates what w i l l happen when the 
specified combination of condition values occur. In this example 
the action i s the designation of the relative protection of the 
material (good, f a i r , etc.) and the word "GOAL" which indicates that 
the goal of the module w i l l have been reached when the action 
section of the module has been carried out and the computer can exit 
this particular module. Since there i s only one module i n this 
simple example, the program would then end. 

The ACTIONS section of the module i s comprised of two parts: 

• the action keyword corresponding to the th i r d part of the 
EXAMPLE section, and 

• the action that i s to be carried out (for example to 
advise the user by a print on the screen and/or a printer 
that "This glove has a *best* glove rating". 

After the information i n the induction module i s entered, the 
program i s assembled by the computer. During this phase, two 
actions take place automatically with no further input from the 
user: 

1. Rules are induced from the examples given the computer, 
and 

2. The actual program for running the computer i s COMPILED 
AND WRITTEN by the computer i t s e l f ! 

These two actions by the computer are key to the success of 
this project. This i s because i t w i l l be impossible for a human to 
consider a l l the p o s s i b i l i t i e s of a large data set and to deduce the 
best (most simple and therefore cost effective) rules to use i n 
order to choose the best protective materials to use. And when the 
data base i s dynamically growing i t would be impossible to use a 
highly structured a r t i f i c i a l intelligence system where the user had 
to rewrite the program modifications himself every time there was a 
change i n the information. 
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3. KEITH A N D STUART A Rule-Induction Program for QA-QC 45 

The rules induced by the computer are shown i n Figure 6. The 
program which the computer wrote for i t s e l f (in "Radial" which i s 
similar to a C-type language) i s shown i n Figure 7. Both of these 
abbreviated notations say the same thing which, i n English i s as 
follows: 

"The rules induced from the example data given are: 

1. If the glove material i s PVC, the rating i s VERY POOR. 

2. If the glove material i s n i t r i l e , and compounds have a 
molecular weight <118 and boil i n g points >= 142°C, the 
rating i s POOR. 

3. If the glove material i s neoprene, the rating i s FAIR. 

4. I f the glove material i s PVA, and the compounds have a 
molecular weight <92, the rating i s FAIR. 

5. If the glove material i s butyl rubber, and compounds have 
a molecular weight <118» the rating i s FAIR. 

6. If the glove material i s n i t r i l e , and the compounds have a 
molecular weight between 118-139 or i f the molecular 
weight i s <118 and the boi l i n g point i s <142°C, the rating 
i s FAIR. 

7. If the glove material i s butyl rubber, and the compounds 
have a molecular weight >118, the rating i s GOOD. 

8. If the glove material i s Viton, the rating i s BEST. 

9. If the glove material i s n i t r i l e and the molecular weight 
i s >139» the rating i s BEST. 

10. I f the glove material i s PVA and the molecular weight i s 
>118 or i f the molecular weight i s 92-118 and the b o i l i n g 
point i s >137°C, the rating i s BEST." 

It i s interesting to correlate these rules with the f i r s t rules 
that were estimated with no help from RuleMaster. These were the 
rules used to construct the f i r s t prototype expert system, GloveAId 
for non-halogenated aromatic compounds: 

1. If the glove material i s PVC, the rating i s VERY POOR. 

2. If the glove material i s n i t r i l e , the rating i s POOR. 

3. If the glove material i s butyl rubber, the rating i s FAIR. 

4. If the glove material i s PVA, the rating i s FAIR. 

5. If the glove material i s neoprene, the rating i s FAIR. 
6. If the glove material i s Viton, the rating i s BEST. 
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ARTIFICIAL INTELLIGENCE APPLICATIONS IN CHEMISTRY 

<cless10> 

0 (a l l states) 
1 only 

[glove] 
Butyljfcbber : [molwt] 

<118 ι => ( f a i r , GOAL ) 
>=118 : => ( good, GOAL ] 

Neoprene : => ( f a i r , GOAL ] 
N l t r l l e χ [molwt] 

<92 : => ( f a i r , GOAL ) 
>=92 : [molwt] 

<118 : [bollpt] 
<137 : => ( f a i r , GOAL ] 

>=137 : [bollpt] 
<139 : => ( f a i r , GOAL ] 

>=139 : [boilpt] 
<142 : => ( f a i r , GOAL ] 

>=142 : => ( poor, GOAL ] 
>=118 : [molwt] 

<139 : => ( f a i r , GOAL ) 
>=139 : => ( best, GOAL ] 

PVA : [molwt] 
<92 : => ( f a i r , GOAL ) 

>=92 : [molwt] 
<118 : [bollpt] 

<137 : => ( f a i r , GOAL ) 
>=137 : => ( bast, GOAL ] 

>=118 : => ( best, GOAL ] 
PVC : => [ v e r y j o o r , GOAL ) 

Viton : => ( best, GOAL ] 

The Induced rule has 11 test nodes end 16 leef nodes. 

Figure 6. The Induced Rules for Nonhalogenated Aromatic 
Compounds. The following are meanings assigned to symbols: 
[...] means " I f ... i s " ; => means "then"; and a colon means 
"and". 
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As can be seen by a comparison of the two rule sets, the one 
induced by RuleMaster has s i g n i f i c a n t l y more refinement to i t and 
w i l l come much closer to making accurate predictions than the human 
induced rule set. 

It i s useful to display these rules as a series of bar charts 
i n order to be able to view them i n relation to one another. This 
i s presented i n Figure 8 so that the human induced ranges can be 
compared to the ranges induced by RuleMaster. I t i s readily seen 
that there i s good agreement between the two ranges i n that a l l of 
the i n i t i a l human assignments are s t i l l present i n the RuleMaster 
assignments. The notable difference i s that there i s considerably 
more refinement to the possible choices i n the RuleMaster chart. 
The significance i s that based on the simpler human induced rules i f 
long term protection (more than 1 hour) was needed for working with 
nonhalogenated aromatics, Viton was the only good choice. However, 
Viton gloves are not only very expensive ($30 a p a i r ) , but they have 
poor t a c t i l i t y , so work involving much dexterity i s precluded when 
wearing them. With the RuleMaster information new p o s s i b i l i t i e s are 
now available for consideration: 

• I f the compounds have molecular weights >138 then N i t r i l e 
may be used; n i t r i l e gloves offer greater t a c t i l i t y and 
they are much less expensive than Viton. 

• If the molecular weight of the compounds i s <118 or >93 
with b o i l i n g points greater than 137°C, then PVA may be 
used; PVA gloves have no better t a c t i l i t y properties than 
Viton gloves but they are cheaper so the expenses could be 
lowered. 

Thus, the rules induced by RuleMaster offer p o s s i b i l i t i e s for 
reducing cost and allowing more dextrous work to be performed than 
would have been available using the human induced rules. 

The important caveat to remember, however, i s that the computer 
has produced the best rules possible from the data i t was given and 
has extended those rules to cover examples past that data set where 
possible. Thus, u n t i l proven with a s u f f i c i e n t number of examples 
any set of rules must always be viewed simply as the best ADVICE 
available. There can always be " o u t l i e r s " caused by additional 
factors that have not yet been discovered. 

Once the computer has induced the rules governing a particular 
set of complex data then i t i s easy for a human to check and see i f 
they are true. This can be done i n two ways: 

1. a simple Rule Table can be constructed, and 

2. additional known examples can be analyzed to challenge the 
rules and see i f they hold true; i f they don»t then addi
tional data i s given the computer so that modified rules 
can be induced. 
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Protective Rating Based on Breakthrough Time 

ι «*» ι Good | Best 

Nitrile 

Neoprene 

Butyl Rubber 

PVA 

K W S S S N N 

Human Induced Protective Ranges 

Butyl Rubber \,'.'.'t'.'.'y//////a 
I» » * * I Z 3 

RuleMaker Induced Protective Ranges 

Figure 8. Protective Ranges of Six Glove Materials Against Non-
halogenated Compounds. 
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An example of the Rule Table that can be constructed from this 
data set i s Table I I . 

Now, once the Rule Table i s constructed i t i s easy to check the 
data again and visua l i z e these relationships; that i s , to v e r i f y 
that they are true. But, remember the lack of obvious relationships 
when the example data was f i r s t examined. 

The use of a r t i f i c i a l intelligence, and s p e c i f i c a l l y a rule 
inductive program such as RuleMaster i s an excellent way that 
meaningful relationships can be derived from the large and diverse 
mass of data being produced. The use of a r t i f i c i a l intelligence i n 
this way i s referred to as "knowledge manufacturing". Thus, the 
strongest features of a computer (to remember and correlate large 
numbers of data) and humans (to be creative and to use reasoning 
capabilities beyond that of a computer) are being used to solve very 
complex problems. 

Summary 

In summary, RuleMaster i s an expert system building package intended 
to solve many of the problems involved i n the construction of large 
knowledge based programs. I t s inductive learning system (RuleMaker) 
allows rapid and effective acquisition of expert knowledge. The 
Radial language allows structured organization of large quantities 
of knowledge. Radial also provides a f a c i l i t y for presenting 
ordered explanation of reasoning to any level of elaboration re
quired. 

Use of an expert system i n conjunction with a s t a t i s t i c a l 
program for pattern recognition such as Ein*Sight or SIMCA i s a 
concept that offers an excellent probability of success i n (1) 
finding, (2) ordering, and (3) using the most selective chemical and 
physical parameters for choosing the best protective materials to 
use with a wide variety of hazardous chemicals. No other program 
can be used both to help develop the rules needed for analysis of a 
complex data base (by induction) and then to use these rules i n a 
logic sequence to provide a diagnostic decision. Furthermore, the 
basis of any and a l l decisions made by the computer are completely 
available on demand so that they can easily be checked and/or 
v e r i f i e d . 

The f i r s t prototype system used rules which were derived as 
"best estimates" from a data base of about 1300 tests using 90 
different chemicals. However, the prototype system i s being revised 
using computer-generated rules. Thus, i t i s becoming "smarter" and 
better as i t ' s data base and the resulting rules derived from i t i s 
expanded. Using a computer to evaluate large masses of data i s not 
novel, but using i t to help generate rules by an inductive logic 
process from large masses of data i s an important new achievement. 
One of the significant advantages of this expert system w i l l be a 
consistent unbiased interpretation of the data i n a rapid manner 
once the expert system has been developed. And l a s t l y , RuleMaster 
i s structured so that i t i s easy to add, change, or delete data from 
the expert system so that i t can continue to grow and improve with 
use and experience. These features w i l l be invaluable as the data 
base continues to grow and change. 
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TABLE I I . RULE TABLE FOR NONHALOGENATED AROMATIC COMPOUNDS 

Best 
Glove Material Rating 

Good Fair Poor V Poor 
BuR i f 
MW >= 118 

BuR i f 
MW < 118 

N i t r i l e i f 
MW >= 139 

Neoprene 

N i t r i l e i f 
MW < 118 and 
bp = <142 
- or -

MW >= 118 -< 139 

N i t r i l e i f 
MW < 118 and 
bp >= 142 

PVA i f 
MW >= 118 
- or -

MW >= 92 -< 118 
and bp >= 137 

PVA i f 
MW < 92 
- or -

MW >= 92 -< 118 
and bp < 137 

Viton PVC 

MW = Molecular Weight 
bp = Boiling Point 
BuR = Butyl rubber 
PVA = Polyvinyl acetate 
PVC = Polyvinyl chloride 
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4 
A Chemistry Diagnostic System for Steam Power Plants 

James C. Bellows 

Westinghouse Electric Corporation, Orlando, FL 32817 

A diagnostic system for the steam system 
chemistry of utility power plants is describ
ed. It is an expert system which accepts data 
from a monitoring system and generates 
recommendations for action to improve the 
chemistry of the plant. The monitors collect 
data from important points in the steam 
cycle. Data is transferred to a central data 
center for transmission to a centralized 
diagnostic center. At the diagnostic center, 
the monitors readings are validated before 
being used in the diagnosis of the power 
plant. Recommendations are transmitted to the 
data center for display. The removal of a 
malfunctioning sensor from consideration is 
given as an example of the operation of the 
system. 

Downtime at a steam power plant can be valued at as much as $1 
mil l ion/day. The actual value depends upon the size of the plant 
and the cost of replacement power. For 1000 MW nuclear plants, 
such as those that supply approximately 50% of Chicago's e lec t r ic 
i t y , the $1 million/day is fa i r ly accurate. One of the major 
causes of downtime, especially unscheduled downtime, is corrosion 
due to improper steam and water chemistry. Replacement of 
corroded turbine blading often requires downtime of a month or 
more. Replacement of corroded nuclear steam generators has 
required on the order of 9 months. The chemistry of power plants 
wil l be brief ly reviewed. The goals of the chemistry diagnostic 
system will be stated. The supporting monitoring system will be 
br ief ly described, and capabil i t ies of the current diagnostic 
system described. The scheme for diagnosing monitors and removing 
erroneous data from plant diagnosis wil l be outl ined, and an 
example of a sensor malfunction diagnosis will be given. 

0097-6156/86/0306-0052$06.00/0 
© 1986 American Chemical Society 
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4. BELLOWS A Chemistry Diagnostic System for Steam Power Plants 53 

Power Plant Chemistry 

A power plant may be viewed as a chemical plant which has taken 
by-product sale to the l imi t . It recycles the product and se l ls 
only by-product. By most standards, it is a chemical plant, fu l l 
of reactor vessels, piping, pumps, and tanks. Since the principal 
product is not a chemical, however, people tend to forget that a 
power plant is a chemical plant. Chemistry has often been the 
entry level posit ion, and people were promoted to jani tor . The 
materials are generally chosen to optimize heat transfer and 
mechanical strength and are not optimized for compatibility. 
Figure 1 shows a simplified schematic of a power plant. 

The condenser may consist of copper bearing a l loys, such as 
aluminum bronze, admiralty brass, and Muntz metal. Titanium is 
also used, as are stainless and carbon steels. Its purpose is to 
act as a sink for approximately 2/3 of the heat produced in the 
boi ler . The feedwater heaters are steam to l iquid heat exchangers 
and have have steel or copper alloy tubing and usually carbon 
steel shel ls . Restricting the discussion to foss i l plants for 
s impl ic i ty , the boiler has carbon and alloy steels which are 
chosen for resistance to the 1000-1250° F thermal conditions more 
than for corrosion resistance. The high pressure and intermediate 
pressure turbines must be designed to operate with inlet 
temperatures of the same range. The low pressure turbine operates 
between approximately 700° F and 100° F. The final stages of the 
low pressure turbine are supersonic. A large fossi l turbine will 
be over 10 feet in diameter and weigh on the order of 250,000 
lb . It rotates at 3600 rpm. The centrifugal stresses in the last 
stages of the low pressure turbine dictate high strength alloys in 
the same region that concentrated salt solutions can form. 

There are two fundamental types of boilers: once through and 
recirculat ing. In the case of once through boi lers, al l the feed-
water is converted to steam as i t passes through the boiler in es
sential ly a plug flow regime. Most once through boilers are 
supercrit ical pressure (3500 to 4500 ps i ) , so the dist inct ion 
between l iquid and vapor is lost . In a recirculating boi ler , 
pressures are limited to about 2800 p s i , and steam is separated 
from l iquid in a steam drum. The l iquid is recirculated back to 
the bottom of the boiler and the steam is superheated. In both 
boi lers , the steam is reheated after i t is passed through the high 
pressure turbine. Occasionally a second reheat after the 
intermediate pressure turbine is found. 

Which type of boiler is present in the system has a 
signif icant influence on the fundamental chemistry used in the 
plant. In once through boi lers , no solids can be used so Al l 
Volat i le Treatment (AVT) is employed. AVT consists of extremely 
pure water with the addition of ammonia, or other volat i le amine 
for pH control, and hydrazine for oxygen scavenging. The exact 
concentration of ammonia is chosen to minimize corrosion of the 
feedwater heaters and depends upon the alloys used in their 
construction. The hydrazine feed rate is determined by the amount 
of oxygen in the feedwater. In recirculating boilers at pressures 
over 1500 p s i , the AVT regime is used, but a solid conditioning 
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agent may be added to the recirculating water in the boi ler . The 
purpose of this conditioning agent is to control pH and to 
precipitate impurities in compounds which do not adhere to the 
boiler surfaces. In the United States, this is usually a mixture 
of disodium and trisodium phosphate. In other countries, sodium 
hydroxide may be used. In both types of boilers the fundamental 
chemistry problems are to avoid oxygen and to avoid deposits of 
chemicals on the heat transfer surfaces. Fai lure to avoid either 
of these conditions leads to corrosion, and ultimately to rupture 
of boiler tubing. 

Considerable dissolution of salts may occur in the high 
pressure steam. As the steam density decreases through the 
turbine, the solubi l i ty of the salts decreases, and the salts 
deposit on the turbine. Two categories of deposition exist . 
Alkali metal hydroxides form stable water solutions at a l l 
pressure and temperature conditions within the turbine. Sodium 
hydroxide concentrations can be as high as 90%. These 
concentrated hydroxide solutions lead to rapid stress corrosion 
cracking of turbine materials and must be rigorously avoided. The 
second case is represented by sodium chloride, which deposits as a 
solid throughout most of the turbine. However, salts elevate the 
boiling point of water enough that near the transition from 
superheated to saturated steam, a region exists in which salt 
solutions of 30% are stable. Sodium chloride solutions of this 
concentration at temperatures of 100° C are quite corrosive and 
lead to stress corrosion and corrosion fatigue of turbine a l loys. 

The problem of power plant chemistry becomes one of 
determining which sources of chemicals are active at any given 
time and whether the purif ication systems are working properly. 
The condenser is a common source of impurities. On one side is 
the steam, which must be maintained pure to a few parts per 
b i l l i o n ; on the other is cooling water, which may be sea water. 
The condenser wil l commonly consist of tens of thousands of tubes, 
each of which is sealed to two tube sheets. The sum of al l the 
leaks must be on the order of pints per day. The condenser and 
some other parts of the system operate below atmospheric 
pressure. Oxygen and carbon dioxide from air leaking into the 
system represent signif icant contaminants. Condensate polishers 
are large ion exchange units which remove trace impurities in the 
feedwater. They must be operated properly, or they may add more 
impurities than they remove. Deaerating heaters remove dissolved 
gases from the feedwater. F i n a l l y , a drum boiler is a s t i l l , and 
the efficiency of liquid-vapor separation is c r i t i c a l to the 
purity of the steam. 

Definitions 

At least in the power industry, the terms "monitoring" and "diag
nostics" are often used interchangeably or without careful def i 
n i t ion . Much confusion can arise when these terms are used. For 
purposes of this paper, these terms and the terms "expert system" 
and "malfunction" will be defined here. 
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Monitoring. Collection and manipulation of data for control and 
diagnostic purposes. Monitoring systems will have sensors to 
measure temperatures, pressures, flow rates, and the 
concentrations of chemicals in streams. They may store this 
information in a computer or a data logger. They may perform 
transformations on the data, such as conversion of voltages to 
engineering units, computation of averages, and comparison of two 
values. They may provide alarms when variables are beyond 
acceptable l imi ts . Monitoring systems may even plot graphs. 

Diagnosis (Diagnostics). Determination of condition and specif ic 
cause of this condition. A diagnostic system determines that all 
conditions are as they would be expected, or that there is some 
malfunction of a component that is causing an undesired 
condition. A diagnostic system may also generate recommendations 
for correction of an undesired condition. 

Expert System. A computer reasoning system based on rules 
generated by questioning experts in a given f i e l d . Expert systems 
generally consist of three parts: a rule entering and editing 
program, a rule base, and an inference engine which takes data and 
applies the rules to i t to reach conclusions about the system 
which generated the data. 

Malfunction. Any condition in which a piece of equipment or 
system is imperfect for any reason. Examples might be exhausted 
condensate polishers, leaky condenser tubes, and sensors for which 
the power has been unintentionally turned off . This definit ion of 
malfunction includes deterioration of equipment due to normal 
wear. By this def in i t ion, worn out car brakes are a malfunction. 

Goals of the Diagnostic System 

The goal of an a r t i f i c i a l intell igence diagnostic system is to 
provide the available expert advice to the user, in a time that is 
probably faster than the human could deliver i t . A number of 
decisions have been made about the scope of the system which 
should be stated here. One goal was to use only on-line monitors, 
since only then could the system be responsible for the quality of 
the data. The quality of manual analyses varies in unpredictable 
ways, and we chose not to depend upon i t . If one is to work with 
on-line sensors as the primary source of data, then the val idi ty 
of sensors must be determined within the system. Since on-line 
monitors are expensive there is a corollary goal of a minimum 
number of sensors consistent with diagnosis of important equipment 
malfunctions and sensor condition. The diagnosis must be done 
centrally so that experience gained from one plant can be 
immediately available to other plants by rapid revision of the 
diagnostic rules. Chemistry upsets in power plants generally 
require several hours to develop, so transmission once or twice 
per day to the Diagnostic Center would usually be adequate to 
detect upsets which were developing slowly. To handle the upsets 
that were faster than the regular transmission would detect, i t 
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was decided that the data gathering computer at the plant should 
be sophisticated enough to determine that something is happening 
and make a special transmission of data at that time. The monitor 
set has been chosen to allow high re l i ab i l i t y diagnosis of common 
power plant conditions, but i t wil l support some unusual 
conditions as wel l . Those unusual conditions are included in the 
diagnostic system simply because the supporting data are 
present. F i n a l l y , i t was decided that no information which might 
be relevant, including manual analysis data, should be rejected 
completely, and manual entry points have been included for that 
data. Manual entry of data requires validation of the data before 
entry. 

Monitoring System 

In order for any diagnostic system to draw valid conclusions about 
the condition of a plant, i t must have an appropriate monitoring 
system for gathering data. The monitoring system chosen is shown 
schematically in Figure 1. Sensors are placed on the influent and 
effluent streams of each chemically active component of the 
plant. Thus, by looking at changes in concentrations from 
condensate to condensate polisher eff luent, as well as the 
concentrations in the polisher eff luent, one determines the 
effectiveness of the polishers. For the chemical feed, the 
polisher effluent is the influent to the zone, and the final feed 
(economizer inlet) is the eff luent. The sensor set is kept as 
small as is reasonable, consistent with high certainty of sensing 
malfunctions of the plant and of the sensors. The sensors used 
are given in Table I. 

The output of the sensors is transmitted to a data center in 
the plant, which stores the data. Normally the data are trans
mitted to the central diagnostic center at least once per day, and 
the diagnosis is returned to the data center for display. The 
data center also computes rates of change of variables. The data 
and rates of change are compared with alarm limits and a more 
sensitive l imi t , which we call a diagnosis activation l imi t . If 
the diagnosis activation l imit is reached, a special transmission 
of data is made immediately so that a diagnosis may be made 
immediately. It is believed that this is a suitable compromise 
among the expense of continuously on-line diagnostics, the need 
for immediate diagnosis of an upset, and the need to keep the 
diagnostic system centralized to allow rapid improvement in 
diagnosis as experience with the automated system develops. 

Diagnostic System 

Diagnosis is accomplished by the expert system. The central part 
of the expert system is the rule base. The rule base consists of 
ideas, called nodes, and rules which interconnect them as shown in 
Figure 2 . The upper node is the evidence; the lower node is the 
conclusion. The rule between them wil l state that i f the evidence 
is known to be true with absolute certainty, then the conclusion 
wil l be known to be true (or false) with a specif ic confidence. 

 P
ub

lic
at

io
n 

D
at

e:
 A

pr
il 

30
, 1

98
6 

| d
oi

: 1
0.

10
21

/b
k-

19
86

-0
30

6.
ch

00
4

In Artificial Intelligence Applications in Chemistry; Pierce, T., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1986. 



58 

Table I. 

ARTIFICIAL INTELLIGENCE APPLICATIONS IN CHEMISTRY 

Sensors for a once-through boiler 

Condensate Condensate 
Sensor Pump Polisher Economizer Hot 

Description Discharge Effluent Inlet Reheat Makeup 

Cation 

Conductivity Χ X X X 

Specif ic 

Conductivity Χ X X X 

Sodium Χ X X X 

Chloride Χ X X X 

Dissolved 

Oxygen Χ X X 

Hydrazine X 

pH Χ X X 

S i l i c a Χ X 

Air Exhaust X 

Makeup Flow 

Electr ical 
Load X This aspect of the rule is known as suff iciency. The rule will 
also state that i f the evidence is known to be false with absolute 
certainty, that the conclusion will be known to be false (or true) 
with another specif ic confidence. This aspect of the rule is 
known as necessity. The sufficiency and necessity need not be 
equal. There are many times when something may indicate the 
presence of a condition but not be a necessary consequence of that 
condition. The increases in monitor readings that occur at the 
start of malfunctions are good examples of indicators which will 
signal the presence of a malfunction, but when the malfunction 
becomes stable at some severity, the increase will no longer be 
present. Of course a high value for the monitor reading will then 
be present. Evidence may be sensors or the conclusions from other 
rules. Several rules may support a single conclusion and the same 
evidence may be used for several rules. 

When the system is used to diagnose the power plant 
chemistry, the inference engine will activate al l the rules for 
which evidence exists . Thus al l possible conclusions are examined 
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E V I D E N C E N O D E 1 

RULE 

N O D E 2 

Figure 2 . Basic Step in an Expert System Rule Base. 
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simultaneously. All the evidence for and against al l conclusions 
is always considered. Diagnosis of simultaneous malfunctions 
occurs simply because evidence for those malfunctions exists. The 
structural detai ls of our expert system have been published 
elsewhere (1). 

The nodes and rules for an expert system are based on expert 
judgements. Usually, def ini t ive s ta t is t ics are unavailable for 
the relationships between ideas, but experts have a good feel for 
the relationships. We have found that when the information in the 
rule set is broken down into small enough steps, experts tend to 
have substantial agreement concerning the sufficiency and 
necessity of evidence to a given conclusion. It is quite common 
to find that what an experienced engineer considers to be one step 
is in fact several. When the rule base is constructed, the small 
steps are used. The use of small steps promotes c lar i ty in the 
rule base and, at times, provides experts with new insights. 
Since the diagnostic process must be broken down into small steps, 
the process of building the rule base is much l ike that of 
training an able, but rather ignorant person. 

It has been arbi t rar i ly decided to say that any malfunction 
for which there is less than 30% confidence is probably not 
present with enough severity to cause concern. Between 30% and 
50% confidence, one should be concerned that the malfunction may 
be developing. This represents an early warning, but with 
increased possibi l i ty of error. Between 50% and 70% confidence, 
action is appropriate to confirm or disconfirm the presence of the 
malfunction by collecting additional information, i f necessary. 
Above 75% confidence, a plant malfunction is present with enough 
confidence that action ought to be taken to correct the 
malfunction. Action on a sensor malfunction indication should 
take place above 50% confidence, since by that time the system has 
lost substantial sensit iv i ty to the plant malfunctions supported 
by the sensor. 

Results for a Fossil Once-Through Steam System 

There are currently over 50 malfunctions of a fossi l once-through 
steam system that can be diagnosed. Some of these malfunctions 
are l isted in Table II. It will be noted that some of these 
malfunctions occur as sets of related malfunctions. In some cases 
the members of the set are mutually exclusive, as in the ammonia 
feed malfunctions. In other cases, such as contaminated makeup, 
there is a malfunction which can be broken into smaller, more 
detailed malfunctions. The system can diagnose a variety of 
sensor malfunctions as wel l . The diagnosable malfunctions related 
to each sensor are shown in Table III. To accomplish these 
diagnoses, the system contains over 1300 rules. To test the 
system we have made use of whatever monitoring data we have had 
accessible. This has consisted of Steam Purity Analyzer System 
(2) data which is single location data, Total Plant Survey (3) 
data which is system wide but grab sample, and such plant data as 
has been accumulated from record reviews and diagnostic 
missions. None of these data sets conforms exactly to the monitor 
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4. BELLOWS A Chemistry Diagnostic System for Steam Power Plants 61 

system that is envisioned as input to the diagnostic system, so 
estimates of values of other data which were deemed necessary to 
test the system have been used. A number of diagnoses use the 
rates of change of variables. Since the only available continuous 
(one minute interval) data sets were for the Steam Purity Analyzer 
System, these data sets were sometimes moved to other locations to 
test the sensit iv i ty of plant malfunction confidences to sensor 
malfunctions which were known to be in the data. Where 
intermediate values between grab samples or discrete readings were 
necessary, they were either l inearly interpolated with time or 
made proportional to a sample for which continuous data were 
available. 

One of the important tasks of the system is to diagnose the 
sensor malfunctions and remove the malfunctioning sensors from 
consideration in the plant diagnosis scheme. Chemical sensors are 
high maintenance and high malfunction rate devices. If they were 
not removed from consideration when they malfunction, they could 
generate spurious plant malfunction diagnoses and discredit the 
diagnostic system. The task of removing a malfunctioning sensor 
from consideration is accomplished by taking the confidence that 

Table II. Representative Malfunction Groups for a Once-Through 
Boiler System 

Malfunction Description 
Numbers 

Description 

1. Condenser cooling water leak 
2-8. Contaminated makeup 

9-12. Air in leakage 
13-17. Polisher malfunctions 
18-31. Ammonia feed 

Malfunctions 
32-45. Hydrazine feed 

Malfunctions 
46-47. Contaminated feed 

Chemicals 
48-51. Organic contamination 

52. Contaminated boiler 

Table III. Number of Malfunctions Diagnosed for each Sensor 

Sensor Number of Distinct Malfunctions 

Cation Conductivity 5 
Specif ic Conductivity 4 
pH 4 
Dissolved Oxygen 3 
Sodium 2 
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62 ARTIFICIAL INTELLIGENCE APPLICATIONS IN CHEMISTRY 

there is a malfunction in the sensor and using i t to drive a rule 
that changes the sufficiency and necessity of rules coming from 
that sensor so that the plant diagnostic system is less sensitive 
to the information coming from that sensor. This is shown 
schematically in Figure 3. Data from the sensor and other sensors 
are used to drive rules that diagnose the sensor of interest 
(4). The results of these rules are accumulated in a sensor 
malfunction node. The confidence in this node is used to drive 
rules which alter the sufficiency and necessity of other rules. 
The scheme is analogous to setting a valve point based on the 
values of a number of sensors. 

An example of sensor validation and removal from 
consideration i l lustrates the working of the diagnostic system. 
The malfunctioning sensor is an acid cation exchanged conductivity 
monitor, commonly called "cation conductivity." It consists of a 
cation exchange resin in the hydrogen form followed by a 
conductivity meter. The cation exchange resin removes ammonia 
from the sample stream and the resulting conductivity provides a 
good estimate of total ionic content, except for hydroxide. The 
monitor is very sensitive to most of the impurities that are 
important to power plants. However, when the cation exchange 
resin is exhausted, the monitor reverts to a specif ic conductivity 
monitor and the output is dominated by the ammonia concentration. 

Figure 4 shows a test of the diagnostic system for an 
incident of resin exhaustion for a cation conductivity sensor. 
The data are a combination of real and synthesized plant data and 
are given in Table IV. The condensate values for the condensate 
sensor are those recorded during the actual exhaustion of the 
cation resin column at a plant insta l la t ion . The steam and 
polisher effluent values would be reasonable based on the starting 
value of the real sensors. Al l of the sensor values other than 
the condensate cation conductivity were held constant to clearly 

Table IV. Sensors related to a cation conductivity resin 
exhaustion incident 

Sensor Value Data Source 

Condensate cation conductivity 
Condensate specif ic conductivity 
Condensate sodium 
Makeup addition 
Steam cation conductivity 
Steam specif ic conductivity 
Steam sodium 
Polisher effluent specif ic 
conductivity 

See F i g . 4 
7.87 
2.2 
Off 

0.17 
7.8 
2.1 

Real 
Real 
Real 

Estimated 
Estimated 
Estimated 
Estimated 

0.16 Estimated 

Note: These values were held constant to show the effect of the 
variation in the single variable. 

 P
ub

lic
at

io
n 

D
at

e:
 A

pr
il 

30
, 1

98
6 

| d
oi

: 1
0.

10
21

/b
k-

19
86

-0
30

6.
ch

00
4

In Artificial Intelligence Applications in Chemistry; Pierce, T., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1986. 



4. BELLOWS A Chemistry Diagnostic System for Steam Power Plants 63 
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Figure 3. Block Diagram of Sensor Validation. 
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4. BELLOWS A Chemistry Diagnostic System for Steam Power Plants 65 

show the effect of the single malfunction on the confidence in 
other malfunctions. Of particular interest is the condenser tube 
leak, which has great sensit iv i ty to the value of the cation 
conductivity of the condensate. One sees that the confidence in 
the sensor malfunction, the exhaustion of the resin in the cation 
conductivity sensor, paral lels the increase in the cation 
conductivity reading. At f i r s t , the confidence in the condenser 
tube leak also parallels the increase in the cation 
conductivity. However, as the confidence in the malfunction of 
the cation conductivity sensor increases, the confidence in the 
tube leak peaks at 30% and declines with further increase in the 
confidence in the sensor malfunction. The value of the evaluation 
function, which is used to reduce the sensit ivi ty of the plant 
diagnosis to the malfunctioning sensor, is shown at the bottom of 
Figure 4. It starts at 100% sensit iv i ty and declines as the 
sensor malfunction becomes more certain. By the time the sensor 
malfunction confidence has reached 70%, the plant diagnosis 
practical ly ignores the sensor. Of course, i f the malfunction had 
been a condenser leak, the condensate sodium would have increased 
at the same time as the cation conductivity. The rule base would 
have recognized this occurrence, the confidence in a malfunction 
of the cation conductivity sensor would have been substantially 
reduced, and the confidence in the condenser leak would have 
increased due to the increases in both the cation conductivity and 
the sodium concentration. 

Data Center Displays 

The data center displays the diagnosis and a number of different 
u t i l i t y screens. Figure 5 is a picture of the RECOMMENDATION SUM
MARY screen. It shows the actions which are most important to im
proving the chemistry of the unit at the current time. They are 
l is ted in priori ty based on confidence in the existence of the 
malfunction and on the seriousness of the consequences of the 
malfunction at i ts current severity. On the data center screen, 
the recommendations are color coded, with red recommendations 
having a confidence in the underlying malfunction of at least 
70%. Yellow indicates 30-70% confidence, and green indicates 0-
30% confidence. The rectangles on the right hand edge and along 
the bottom are touch buttons to allow access to other screens. 
They blink i f new information is available on those screens. 
Their color is determined by the color of the most urgent 
information on the screen. The RECOMMENDATION screen shown in 
Figure 6 displays the action, a cryptic reason for taking the 
act ion, and the consequences of not taking action. The 
consequences are as specif ic as the current state of knowledge 
wil l allow. 

Experience with a Generator Diagnostic System 

Although the subject is hardly chemistry, i t would be appropriate 
to make mention of a companion project in the diagnosis of 
conditions in electr ical generators. Such a system is in 
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RECOMMENDATION SUMMARY 

I I Find and repair air leak above hotwell waterline within 
L - 1 100 hr. 

I I Reduce load and repair leak in condenser section 2 
within 24 hr. 

I I Remove polisher vessel #3 from service and regenerate 
1— 1 within 8 hr. 

PL3 
Select 
Unit 

Diagnostic 
Summary 

Diagnostic 
Procedures 

Explanation 

Diagnosis Alarms Monitor 
Menu 

Service 
Menu 

Print 
Screen 

Previous 
Selection 

Figure 5 . Recommendation Summary Screen.  P
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ACTION: 

REASON: 

RECOMMENDATION 

Remove polisher vessel #3 from service within 8 
hr. and regenerate. 

There are significant and increasing acid concen
trations in the boiler feedwater and steam. 

CONSEQUENCES: Continued operation with significant acid concen-
(INACTION) trations will lead to acid corrosion of the boiler 

tubing and the turbine blading and steeples. 
Damage can be significant in 48 hr. 

Diagnostic 
Summary 

Diagnostic 
Procedures 

Explanation 

Diagnosis Alarms Monitor 
Menu 

Service 
Menu 

Print 
Screen 

Previous 
Selection 

Figure 6. Recommendation Screen. 
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operation for seven power plants in Texas. While yet in the 
prototype stage, i t detected a developing generator malfunction 
several hours before any alarms sounded. Since the malfunction 
was known, appropriate resources could be mobilized before the 
generator was taken out of service, and the problem was repaired 
in four days. This particular malfunction normally requires two 
to three weeks for repair when i t is allowed to progress to the 
point where the automatic generator control systems take the 
generator out of service. Working with a customer in the final 
stages of the development of the generator system has influenced 
many decisions in both the generator and the chemistry diagnostic 
systems. 

Summary 

An a r t i f i c i a l intell igence system for the chemistry of a fossi l 
once-through steam system has been constructed. It is based on 
on-line monitors. It diagnoses both sensor and plant malfunction 
and removes malfunctioning sensors from diagnosis of plant mal
functions. The system has been tested of f - l ine using real and 
synthesized power plant data and is now ready for testing in a 
plant. 
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5 
A Real-Time Expert System for Process Control 

Lowell B. Hawkinson, Carl G. Knickerbocker, and Robert L. Moore 

LISP Machine Inc., Los Angeles, CA 90045 

Expert systems technology can provide improvements in 
analysis of process information, i n t e l l i g e n t alarming, 
process diagnosis, control and optimization of proces
ses. However, to realize these benefits, a real-time 
expert system capability i s required. A program 
design i s described which supports forward and 
backward chaining inference in a real-time environ
ment, with dynamic measurement data. The knowledge 
base for the program i s implemented in structured 
natural language form for application to a broad range 
of process expert systems. Plant test results are 
described. 

In the real-time application of expert systems, a number of design 
considerations, beyond those usually considered in expert systems, 
become important. Execution efficiency i s a prime consideration. 
In conventional expert systems, the facts and knowledge upon which 
the inference i s based are s t a t i c . In the indus t r i a l application, 
the facts or process measurements are dynamic. In an indu s t r i a l 
application there may be several thousand measurements and alarms 
which may si g n i f i c a n t l y change in value or status in a few minutes. 

The problem posed by an operator advisor, to give expert 
diagnosis of plant condition and to recommend emergency actions or 
economic optimization adjustments, i l l u s t r a t e s these real-time 
requirements. Some of the plant conditions which can occur 
include : 

1. C r i t i c a l measurement f a i l u r e . In this case, the information 
presented to the operator i s incorrect. An expert system would 
use a process knowledge base to detect inconsistencies and to 
alert the operator. 

2. Process upset. In this case, the expert system would identify 
underlying process problems, distinguishing causes from 
effects, and would advise the operator accordingly. Heuristic 

0097-6156/ 86/0306-O069$06.00/0 
© 1986 American Chemical Society 
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70 ARTIFICIAL INTELLIGENCE APPLICATIONS IN CHEMISTRY 

rules of optimization would be applied by the expert system to 
give control advice. 

In these examples, the expert system i s simply applying the 
expertise used in i t s development. The potential advantage of the 
operator advisor i s that this expertise i s available quickly, on 
any s h i f t , for providing organized advice to the operator. 

To meet these requirements, several design considerations must 
be addressed: 

1. Data access. An e f f i c i e n t real-time data interface must be 
established with the distributed measurement system. 

2. Inference paradigms. The basic inference mechanisms of 
forward-chaining and backward-chaining must be integrated into 
a real-time execution environment. 

3. Computational efficiency. The efficiency of inference i s 
enhanced by program and knowledge-base structure and by machine 
speed. Also, heuristic procedures, as used by experts, can 
augment the deductive procedures of conventional inference. 

The program developed by LMI i n response to these design 
requirements i s called Process Intelligent Control (PICON). The 
individual design considerations are addressed i n the following 
discussion. 

Process Intelligent Control 

The expert system package i s designed to operate on a LISP machine 
interfaced with a conventional distributed control system. The 
design assumes that up to 20,000 measurement points and alarms may 
be accessed. The Lambda machine from LMI was u t i l i z e d . The r e a l 
time data interface i s via an integral Multibus connected to a 
computer gateway in the distributed system. 

Data transfers, in floating point engineering units or in 
status states, are requested by the expert system. Thus the 
distributed system does not transmit a l l measurements and alarms 
on a fixed scan basis, but rather the process data are accessed as 
required for inference. In a sense, the expert system i s acting 
l i k e an expert operator, who focuses attention or scans the 
process operation selectively, using expertise to determine 
specific areas of attention. 

The basic inference paradigms supported by the expert system 
are forward-chaining and backward-chaining. Within the context of 
an alarm advisor, there are requirements for both of these para
digms. An expert process operator, during normal plant operation, 
w i l l scan key process information. This i s for purposes of moni
toring control performance and detecting problems which may not 
cause e x p l i c i t alarms. The programming paradigm which reflects 
this approach i s a scanned forward-chaining inference. The 
heuristic rules which determine possibly-significant-events are 
scanned, and rule condition matching triggers an a l e r t to the 
expert system monitor program. Conventional alarms also may 
trigger an a l e r t , i f they are h e u r i s t i c a l l y ranked as possibly-
significant-events. 
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5. HAWKINSON ET AL. A Real- Time Expert System for Process Control 71 

An expert process operator, once alerted, w i l l focus attention 
on the problem. This may involve invoking procedure rules for 
safety or other reasons, and i t may involve assembling information 
and primary analyses to allow inference about the problem. Logic 
rules and procedures are used when required for the diagnostic 
inference. The expert system mimics the expert process operator 
in this regard: Logic rules and procedures are invoked 
s p e c i f i c a l l y when they are required for diagnosis of a process 
problem, or as requested for a specific step in inference. 

In working through process control examples, we found that many 
calculations, data checks, rate checks and other computationally 
intensive tasks are done at the f i r s t l e v e l of inference. 
Considerations of computational efficiency led to a design 
u t i l i z i n g two p a r a l l e l processors with a shared memory (Figure 1). 
One of the processors i s a 68010 programmed in C code. This 
processor performs computationally intensive, low le v e l tasks 
which are directed by the expert system in the LISP processor. 

The processing of data applies a le v e l of intelligence. Instead 
of mere measurement values, the expert may base inference on 
trends or patterns of measurements. Thus the system must be able 
to access primitive functions of data, such as averages and trends 
of values, and quality information, such as the presence of noise 
or discontinuous values. Such functions are conveniently 
calculated in the p a r a l l e l 68010 processor, coded in C language 
for execution efficiency. 

An expert, given time to do so, may u t i l i z e calculations to 
develop inference results. For example, a material balance 
calculation around a process unit may indicate a measurement 
inconsistency. To mimic this expertise, general mathematical 
operations on combinations of measurements or functions of 
measurements are implemented in the p a r a l l e l processor also. 

Higher levels of inference depend on the truth conditions of 
the f i r s t l e v e l antecedent conditions, and thus higher levels of 
inference involve pattern matching and chained-inference logic. 
Higher le v e l inference i s done i n the LISP processor, using 
various expert system paradigms, while the f i r s t l e v e l antece
dents, which are computationally intensive, are evaluated i n the 
p a r a l l e l 68010 processor. 

The expert system package i s designed so that an algorithm of 
reasonably arbitrary structure can be dynamically loaded into the 
68010 from the LISP processor. This allows, for example, the 
expert system to implement process-monitoring functionality i n a 
dynamic fashion, the equivalent of: 

"look closely at the energy balance around the specific process 
unit for the next few minutes." 

The expert system design includes the a b i l i t y to change the time 
period of measurement and algorithm processing i n individual 
cases. Thus, in effect, the system can "focus attention" to a 
specific area of the process plant, and put a l l associated 
measurements and rules for that area on frequent scan. This can 
be done under control of the LISP program. Thus, for example: 
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A back-chaining diagnostic expert system could reach a point 
where an inference test i s required. 
The LISP program would t e l l the 68010 processor to "focus" on 
the measurements and low-level inferences required around a 
process unit. 
The inference could then be tested. 

Another use of this "focus" f a c i l i t y i s to scan the plant i n a 
background mode, focusing attention on parts of the plant to 
evaluate unit process performance and detect subtle problems, 
u t i l i z i n g both the programmed knowledge of the the expert process 
operator and the expert process engineer. I t i s not pr a c t i c a l to 
examine an entire plant continuously with this intensity, but the 
individual parts of the plant could be scanned in a background 
mode. This i s equivalent to the way a process engineer would 
analyze plant performance during normal plant operation. 

I t should be noted that the a b i l i t y to focus not only emulates 
the way a human expert works, but also i t avoids the problem 
associated with overloading the distributed process system with 
requests for information. While the expert system knows about a l l 
20,000 measurement and alarm points in the process environment, 
only those of interest to the expert system need be accessed. 

The LISP environment contains the higher-level functionality of 
the expert system. A truth-maintenance design structure i s used. 
The design assumption i s that lower-level i n t e l l i g e n t processing, 
done in the 68010, w i l l signal potentially significant process 
events. Thus, only a table of truth condition triggers needs to 
be checked by the LISP programs. 

Some general examples of inference using the system: 

- detecting process problems, pa r t i c u l a r l y on complex 
combinations of conditions which require expertise for proper 
interpretation. 

- focus inference, in which rules of a l l p r i o r i t i e s are activated 
for a unit process. In the typ i c a l use, a 
possibly-significant-event (detected by a high p r i o r i t y 
procedure rule) would trigger a focus on the process unit, thus 
i n i t i a t i n g the gathering of information required for inference 
around the process unit. 

- diagnosis, a backward chaining inference procedure, which would 
be triggered by a possibly-significant-event or by operator 
request. Diagnosis uses the focus mechanism. An explanation 
i s then given of the diagnostic conclusion. 

Summary and Future Extensions 

V i r t u a l l y a l l tasks which require the routine application of human 
expertise, in an organized way, are candidates for expert systems. 
The computer implementation of expertise has such advantages as 
speed, around-the-clock a v a i l a b i l i t y , and ease of expansion of the 
knowledge base. As such, expert systems represent the next 
generation of higher le v e l software, performing tasks presently 
done by human operators. 
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Expert systems have been investigated for 20 years. The 
implementation of expert systems i s now being undertaken on a 
widespread basis, due to the a v a i l a b i l i t y of hardware and software 
tools which al l e v i a t e the "knowledge-engineer bottleneck", allow
ing cost effective implementation. In a similar way, real-time 
applications of expert systems require tools to allow straight
forward implementation. We have presented a software/hardware 
structure which supports knowledge-base capture and real-time 
inference for process applications. 

In general, the LMI package (Figure 2) provides a 
knowledge-base structure, f a c i l i t i e s for acquiring the knowledge 
base in an organized manner, and real-time c o l l e c t i o n of data with 
some p a r a l l e l processing of inference, and higher-level inference 
tools. The individual applications require specific knowledge 
engineering, which i s f a c i l i t a t e d using the tools we have 
described. The system i s currently ins t a l l e d at Texaco and Exxon 
f a c i l i t i e s and i s i n p i l o t plant or laboratory testing at seven 
additional s i t e s . 

CAPTURE 

y y 

RULES 
/ 

DIAGRAM 

I/O 
/ / 

RTIME MEMORY RTIME 
/ 

MEMORY 

Figure 2. General structure of the LMI package. 

R E C E I V E D December 17, 1985 
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6 
Interpretation and Design 
of Chemically Based Experiments 
with Expert Systems 

David Garfinkel1, Lillian Garfinkel1, Von-Wun Soo2, and Casimir A. Kulikowski2 

1University of Pennsylvania, Philadelphia, PA 19104 
2Rutgers University, New Brunswick, NJ 08903 

Expert system building programs, e.g., EXPERT, can 
now supervise numerical calculations in addition to 
performing qualitative reasoning and choosing among 
possible alternatives. This capability can be used 
to interpret experiments, calculate optimal designs 
for them, and automate model construction and mani
pulation, as well as to resolve associated problems 
due to differing conceptual frameworks and defini
tions. Three hierarchically arranged applications 
are suggested to (a) determine and manage free Mg2+ 

levels; (b) construct an expert system to derive 
enzyme kinetic models (including Mg2+) and f i t them 
to data; (c) design experiments (including enzyme 
kinetics) using minimal numbers of animals to prove 
drugs safe and effective. 

Expert systems, and a r t i f i c i a l i n t e l l i g e n c e i n general, are new 
f i e l d s whose breadth of a p p l i c a t i o n , and indeed, whose exact d e f i n i 
t i o n s , are not yet completely s e t t l e d . I t i s sometimes claimed that 
no two experts on a r t i f i c i a l i n t e l l i g e n c e agree exactly on what i t s 
d e f i n i t i o n i s . D e f i n i t i o n s of expert systems at l e a s t agree on the 
ne c e s s i t y f o r expertise, but even here there are d i f f e r e n c e s i n 
emphasis and i n p r i o r i t y . 

Expert systems, which evolved from many sources, were recognized 
as a d i s t i n c t system type because of a la r g e body of work on medical 
c o n s u l t a t i o n problems. The r e s u l t i n g systems, such as MYCIN, CASNET, 
and INTERNIST/CADUCEUS, e s s e n t i a l l y solved what are considered 
c l a s s i f i c a t i o n problems, by choosing among a set of p o s s i b l e d i a g 
n o s t i c or treatment a l t e r n a t i v e s . Such systems have u s u a l l y 
obtained information by asking the user questions. They have u s u a l l y 
performed q u a l i t a t i v e reasoning with "knowledge" r u l e s of the type: 
i f c onditions A are true then conclude hypothesis Β with p r o b a b i l i t y 
X. There e x i s t other types of expert systems, such as DENDRAL, which 
produces i n t e r p r e t a t i o n s of q u a n t i t a t i v e experimental evidence, and 
MOLGEN, which formulates plans f o r the design of experiments. Most 
expert systems have been w r i t t e n i n some v a r i a n t of LISP or a r e -

0097-6156/86/0306-0075$06.00/0 
© 1986 American Chemical Society 
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l a t e d language, which were o r i g i n a l l y not as w e l l s u i t e d f o r c a l c u l a 
t i o n as f o r l o g i c a l manipulation. More r e c e n t l y i t has been 
p o s s i b l e to get an expert system to supervise c a l c u l a t i o n s , d i g e s t 
considerable masses of observational data, and draw conclusions which 
are not s t r i c t l y computational, as i n the case of ELAS and the o i l -
w e l l d r i l l i n g programs. These involve the EXPERT system b u i l d e r 
(1), which has the f o l l o w i n g advantages: i t i s w r i t t e n i n FORTRAN 
and can therefore e a s i l y communicate with FORTRAN programs; a PROLOG 
ve r s i o n has a l s o r e c e n t l y been prepared; i t has data base c a p a b i l i 
t i e s ; and i t i s good at explaining what i t i s doing and why. I n t e r 
a c t i o n between a r t i f i c i a l i n t e l l i g e n c e and modeling has evolved to 
where modeling s o c i e t i e s r o u t i n e l y program a r t i f i c i a l i n t e l l i g e n c e 
sessions at meetings, and are forming t e c h n i c a l committees on t h i s 
subj ect. 

This paper r e f l e c t s the past a c t i v i t i e s of some of i t s authors 
i n computer modeling of the chemical aspects of b i o l o g i c a l systems. 
This a c t i v i t y requires expertise i n both model-building and i n the 
relevant biology. I t a l s o involves examination of the a c t i o n s of and 
r e s u l t s obtained by experts, l i k e that r o u t i n e l y done i n b u i l d i n g ex
pert systems. I t a l s o involves keeping trac k of and coherently 
explaining sequences of d e c i s i o n s , which expert systems are equipped 
to do. 

In t h i s paper we are concerned with a set of r e l a t i v e l y s i m i l a r 
p o s s i b l e a p p l i c a t i o n s i n v o l v i n g management of c a l c u l a t i o n s and of 
modeling. These involve actions ( c a l c u l a t i o n , information r e t r i e v a l , 
and " i n t e l l i g e n t " reasoning) at more than one h i e r a r c h i c a l l e v e l . 
P a r t i c u l a r a t t e n t i o n w i l l be given to the design and i n t e r p r e t a t i o n 
of experiments i n enzyme k i n e t i c s . Designing an experiment may i n 
volve computation of optimal conditions, and i t s i n t e r p r e t a t i o n may 
involve f i t t i n g of optimal parameters of a model, but non-numerical 
reasoning procedures are a l s o involved. A t t e n t i o n i s therefore r e 
quired to the kinds of reasoning employed i n designing experiments 
and to the c r i t i q u i n g of the reasoning and techniques involved i n 
such experiments. A h i g h - l e v e l d e s c r i p t i o n of an experimental design 
c y c l e can be given i n such steps as: d e f i n i t i o n of the problem (what 
questions are to be addressed? what hypotheses are to be t e s t e d ? ) ; 
q u a n t i t a t i v e modeling; design and then performance of the necessary 
experiments; a n a l y s i s of the r e s u l t s ; and then model r e i n t e r p r e t a t i o n 
and p o s s i b l e problem r e d e f i n i t i o n (2) . 

A Problem of D e f i n i t i o n 

The process of b u i l d i n g expert systems u s u a l l y involves determining 
the conceptual framework and pattern of d e c i s i o n making of experts 
(often one outstanding expert). These are often not w r i t t e n down 
and may not be c l e a r l y explainable because there i s heavy r e l i a n c e on 
h e u r i s t i c s and even hunches. However, we would l i k e to suggest that 
t h i s may not be the only way to apply e x p e r t i s e . We have encountered 
workers i n d i f f e r e n t f i e l d s handling the same subject matter d i f f e r 
e n t l y because they have d i f f e r e n t conceptual frameworks and d i f f e r e n t 
jargon as w e l l as d i f f e r e n t h e u r i s t i c s and p r i o r i t i e s . We o f f e r the 
f o l l o w i n g example i n v o l v i n g a r e l a t i v e l y simple m u l t i p l e e q u i l i b r i u m 
c a l c u l a t i o n . 
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Although there i s no controversy about the basic d e f i n i t i o n of 
s t a b i l i t y constants, p h y s i c a l chemists and biochemists handle the 
concepts involved and the r e s u l t i n g c a l c u l a t i o n s d i f f e r e n t l y . P h y s i 
c a l chemists think i n terms of r e a c t i v e species and biochemists i n 
terms of t o t a l concentrations of components. A f u r t h e r source of 
confusion i s the d i f f e r i n g d e f i n i t i o n s of "apparent constant 1 1. To a 
p h y s i c a l chemist the s t a b i l i t y constant f o r MgATP formation 

2+ 4- 2-Mg + ATP = MgATP 

i s defined as 

CMgATP2"*] 

^ = C M g 2 + ] [ A T P 4 - ] 

For a given temperature the standard s t a t e i s at zero i o n i c strength. 
The constant observed experimentally at f i n i t e i o n i c strengths would 
be considered "apparent". A biochemist would c a l l + s u c h a +constant 
" i n t r i n s i c " . The presence of i n t e r f e r i n g ions^(H and Κ ) which 
form Η and Κ chelates of ATP by binding to ATP " would be handled by 
c a l c u l a t i o n s i n v o l v i n g the corresponding e q u i l i b r i a . 

Biochemists handle these c a l c u l a t i o n s d i f f e r e n t l y , and define 
apparent constantS2in terms of t o t a l components. Tljius an apparent 
constant f o r MgATP at low pH i n the presence of Κ would be defined 
as 

*SlgATP 

Κ = * 

< 1 + C H + 3 K H A T P +
C k + 3 W 

While i t i s r e l a t i v e l y easy to show that the two c a l c u l a t i o n s 
are equivalent i n simple systems, i t i s not so easy with more comj^ 
plex i n vi v o systems, as when these e q u i l i b r i a are studied with ? 
NMR spectra from perfused or i n t a c t organs. We r e c e n t l y (3) became 
involved i n a controversy where a 4-fold d i f f e r e n c e i n magnesium ion 
l e v e l was c a l c u l a t e d from s u b s t a n t i a l l y i d e n t i c a l NMR spectra as a 
r e s u l t of such d i f f e r e n c e s i n d e f i n i t i o n . Our experience i n d i c a t e s 
that an i n t e l l i g e n t program to supervise such c a l c u l a t i o n s would be 
quite u s e f u l . 

In such a s i t u a t i o n an i n t e l l i g e n t program may f u n c t i o n as an 
" i n t e l l i g e n t i n t e r f a c e " , a program which can t r a n s l a t e information 
from one conceptual framework to another. Even though there are many 
experts i n the subject matter involved, programs of t h i s type would 
be u s e f u l f o r the many others who are not expert i n the subject 
matter or the c a l c u l a t i o n s involved or who have d i f f i c u l t i e s i n com
munication. The advent of software f o r small expert systems on 
microcomputers would add the advantage of convenience as w e l l . 
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A p p l i c a t i o n s 

We describe here three p o s s i b l e a p p l i c a t i o n s of expert systems to 
supervise c a l c u l a t i o n s and design experiments which are l a r g e l y chem
i c a l l y based, although they have b i o l o g i c a l content as w e l l . These 
are arranged i n a h i e r a r c h i c a l l y i n c r e a s i n g order of complexity 
( i . e . , each l e v e l needs the c a p a b i l i t i e s of the preceding one). The 
simplest of these a p p l i c a t i o n s i s to supervise complex e q u i l i b r i u m 
c a l c u l a t i o n s . The example described i s of a type which often occur 
i n studying b i o l o g i c a l systems where i t i s necessary to c o n t r o l con
cen t r a t i o n s of r e a c t i v e species. Such c a l c u l a t i o n s are often not 
properly handled. 

C a l c u l a t i o n s Involving Magnesium Ions 

Enough examples of poorly designed experiments and poor c a l c u l a t i o n s 
i n v o l v i n g magnesium ions e x i s t i n the biochemical l i t e r a t u r e to i n 
d i c a t e a need f o r a b e t t e r method. This a l s o a p p l i e s to other 
e q u i l i b r i a of comparable complexity, as with other metal ions. Ex
periments i n v o l v i n g enzyme k i n e t i c s are p a r t i c u l a r l y a f f e c t e d . 
Magnesium ions a f f e c t many enzymes by binding s t r o n g l y both to the 
enzymes and to important reactants such as ATP. In a review on the 
k i n e t i c s of magnesium-dependent enzymes, Morrison (4̂ ) stated 1 1 i t i s 
unfortunate that studies on many metal-activated enzymes . . . have 
been undertaken using conditions that preclude i n t e r p r e t a t i o n of the 
data." 

The relevant c a l c u l a t i o n s are commonly handled poorly, because 
the e q u i l i b r i u m equations involved are d i f f i c u l t to solve manually 
(but not with computers). The few c a l c u l a t i o n s that are a c t u a l l y 
reported i n the biochemical l i t e r a t u r e use s i m p l i f i e d methods of 
l i m i t e d and frequently unknown v a l i d i t y . Large excesses of magnesium 
ion are frequently used i n experiments, perhaps i n an attempt to 
avoid such c a l c u l a t i o n s . The relevant theory i s w e l l worked out and 
there are e x c e l l e n t reviews. The l i m i t a t i o n appears to involve d i f 
f u s i o n to the (mathematically) inexpert user, which i s one of the 
motivations of b u i l d i n g expert systems. 

The computational and other (e.g., data base and design) capa
b i l i t i e s to meet these needs can be s p e c i f i e d . We may need to deter
mine how much magnesium ion (or other substance of i n t e r e s t i n an 
e q u i l i b r i u m system) i s present i n a c e l l i n t e r i o r or a s o l u t i o n emu
l a t i n g the c e l l i n t e r i o r . Here a complex s e r i e s of e q u i l i b r i a may 
be a f f e c t e d by conditions such as temperature or i o n i c strength. Or 
i t may be necessary to work through a pattern of concentrations of 
some p a r t i c u l a r molecular or i o n i c species to determine an ultimate 
e f f e c t , or to keep p a r t i c u l a r species or p a r t i c u l a r side e f f e c t s 
w i t h i n c e r t a i n l i m i t s while changing others. Computations may have 
to s t a r t from any of the p a r t i c i p a t i n g substances which are e i t h e r to 
be c o n t r o l l e d or are observable. 

Computation of amounts of species present i n straightforward 
e q u i l i b r i a can u s u a l l y be done without much d i f f i c u l t y , e.g., (J5) . 
Some of the other requirements mentioned above are demanding enough 
to define a minimal i n t e r e s t i n g problem i n a r t i f i c i a l i n t e l l i g e n c e 
("toy problem"). Included are conversions among sets of conditions 
( i . e . , d i f f e r e n t temperature or i o n i c strength), which have caused 
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considerable d i f f i c u l t y , and which could be handled by providing an 
expert system with the necessary conversion algorithms and data. 
Such a system would include a program s i m i l a r to that of Storer and 
Cornish-Bowden to do e q u i l i b r i u m c a l c u l a t i o n s . A communication-
c o n t r o l subprogram would be l i i k e d to an expert model by using the 
EXPERT knowledge-base s h a l l (or system-builder) which i s advantageous 
here because i t can i n t e r a c t with procedures such as those w r i t t e n i n 
FORTRAN f o r numerical computation. A d d i t i o n a l programs and a small 
data base, which EXPERT can handle, would keep trac k of which chemi
c a l was what array element, and other requirements mentioned above. 

The system could be used to answer questions such as: 
How could I add to a s o l u t i o n combinations of ATP and magnesium 

ion so t h e i r chelate i s constant and f r e e ATP v a r i e s s y s t e m a t i c a l l y 
so as to define families of curves with ( d i f f e r e n t ) constant magnesium 
ion? 

This type of c a p a b i l i t y could be extended to magnesium-control
l e d enzymes without s u b s t a n t i a l expertise regarding t h e i r k i n e t i c s 
by adding another l i m i t e d expert system to manage simple c a l c u l a t i o n s 
i n v o l v i n g m o d i f i c a t i o n s to t h e i r k i n e t i c s . This would re q u i r e adding 
a small data base of the binding and i n h i b i t i o n constants of magne
sium ion with important enzymes. We have assembled t h i s information 
f o r some of the enzymes we have worked with (6) . This would permit 
answering questions l i k e : 

How much magnesium ion can I add to s o l u t i o n X without i n h i b i t 
ing enzyme Y by more than 10%? 

C a l c u l a t i o n s Involving Enzyme K i n e t i c s 

At the next h i e r a r c h i c a l step would be an expert system f o r the de
sign of experiments i n enzyme k i n e t i c s (and mathematically s i m i l a r 
systems l i k e transport k i n e t i c s ) . Such a system would l a r g e l y a r i s e 
from our experience i n modeling enzyme k i n e t i c s . I t could systema
t i c a l l y perform, c o r r e c t l y , r o u t i n e operations that are e i t h e r not 
done or done i n c o r r e c t l y , because they are too tedious or r e q u i r e 
p a r t i c u l a r e x p ertise. (For t h i s subject there e x i s t s a s i z e a b l e body 
of well-worked out theory, and yet considerable work i s done as i f 
t h i s theory d i d not e x i s t ) . Such an expert system could o f f e r the 
expert user b e t t e r modeling strategy and completeness and the inex
perienced user the advantage of " f r i e n d l i n e s s 1 ' . As an extreme 
example, we modeled (2) what i s probably the best data set i n the 
phosphofructokinase l i t e r a t u r e , and improved on i t s i n t e r p r e t a t i o n 
(which included modeling) by the o r i g i n a l experimenters, who are 
h i g h l y expert i n t h i s subject. I t was found that one important 
e f f e c t was not determined by t h e i r data, but could have been with a 
few a d d i t i o n a l measurements. I f an expert system such as that 
described below were a v a i l a b l e , t h i s could have been done before 
t h e i r experiments were concluded—and l e f t permanently incomplete. 
Also, the e n t i r e i n t e r p r e t a t i o n task would have required consider
ably l e s s time and e f f o r t . 

In working with enzyme and transport k i n e t i c s we already have a 
program of considerable s o p h i s t i c a t i o n , PENNZYME (8.) to f i t e x p e r i 
mental data to r a t e laws by optimization methods and to d i s p l a y the 
r e s u l t s of the f i t t i n g process. This program would re q u i r e extension 
to perform experimental design functions (such as c a l c u l a t i n g design 
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and information m a t r i c e s ) . For most a p p l i c a t i o n s i t would be best 
f o r the s c i e n t i s t to remain i n the loop. An i n t e r f a c e between 
PENNZYME and EXPERT such that EXPERT could d i r e c t PENNZYME1S c a l c u 
l a t i o n f unctions would be very s i m i l a r to the i n t e r f a c e between 
EXPERT and s e v e r a l o i l - w e l l logging programs (9-10). To help i n 
assessing and documenting modeling a p p l i c a t i o n s i t would be d e s i r a b l e 
to have EXPERT produce a record of i t s a c t i o n s , d e c i s i o n s , and 
reasoning, i n a d d i t i o n to the chemical or b i o l o g i c a l output. This 
would re q u i r e only a straightforward extension of EXPERT'S very good 
e x i s t i n g c a p a b i l i t i e s f o r explaining i t s actions to a user o n - l i n e . 

The major operations that would have to be performed by such an 
expert system are: 

S e l e c t i o n of a conceptual model. As the f i r s t step i n modeling, i t i s 
necessary to decide what kind of a conceptual model to t r y . For an 
enzyme t h i s includes a choice of mechanism and an i n d i c a t i o n of the 
numerical values that go with i t (determination of the best values 
comes l a t e r ) . Probably t h i s w i l l be b e t t e r done by an expert human 
than by a program for some time. Examples of r u l e s (domain knowledge) 
fo r enzyme k i n e t i c s which are a p p l i c a b l e (regardless of the methods 
of c a l c u l a t i o n used) are: 

1. Kinases u s u a l l y have Km*s f o r ATP considerably lower than 
t i s s u e l e v e l s of ATP. 

2. Most other Km1s approximate the usual t i s s u e l e v e l of the 
substrate involved. 

3. C e r t a i n c l a s s e s of enzymes tend to have c h a r a c t e r i s t i c 
mechanisms. (Examples: transaminases often have ping-pong mechan
isms, kinases u s u a l l y do n o t ) . 

4. The commonly used l i n e a r i z e d p l o t s of k i n e t i c data are a 
usable i n i t i a l guide to determining the mechanism. 

S e l e c t i o n of a computational model. Once a conceptual model has been 
sel e c t e d , i t i s necessary to encode i t i n a form usable f o r c a l c u l a 
t i o n , i . e . , a r a t e law g i v i n g the v e l o c i t y of the enzyme as a func
t i o n of the relevant chemical concentrations. An expert model would 
include determination of the s i t u a t i o n s where a given r a t e law should 
be t r i e d together with c o n t r o l information that determines how t h i s 
i s to be done. The expert model obtains such information by query
ing the user or by deduction from i t s knowledge r u l e s using r e s u l t s 
from past c a l c u l a t i o n s . Means f o r d e r i v i n g such r a t e laws e x i s t , 
e.g., the KINAL program of Cornish-Bowden (11), which we have modi
f i e d (PROKINAL) to f a c i l i t a t e i n t e r f a c i n g with EXPERT to derive r a t e 
laws automatically. The operations involved included: 

1. Obtaining the proper r a t e law from an e x i s t i n g l i b r a r y or 
generating a new one, as with KINAL; 

2. Matching the generalized designations f o r reactants i n the 
r a t e law (reactant A, reactant B, . . .) with the r e a l ones i n the 
system being studied; 

3. Asking the user f o r c o r r e c t i o n s i f there i s a problem; 
4. Obtaining s t a r t i n g values of parameters, as from information 

on analogous enzymes; 
5. F i t t i n g the r a t e law to the data and obtaining the optimal 

parameters; 
6. Making appropriate m o d i f i c a t i o n s to the r a t e law. 
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F i t t i n g of models to data. F i t t i n g r a t e laws representing models to 
the experimental data i s the l o w e s t - l e v e l and most frequent operation 
t h i s expert system would do. PENNZYME does a two-step opt i m i z a t i o n , 
f i r s t using t h i s simplex method which i s robust and independent of 
s t a r t i n g guesses, and then the more accurate Fletcher-Powell method, 
which requires b e t t e r s t a r t i n g estimates. Examples of h e u r i s t i c 
r u l e s on how to operate PENNZYME (problem-solving knowledge) are: 

1. Do at l e a s t one simplex o p t i m i z a t i o n before doing a F l e t c h e r -
Powell o p t i m i z a t i o n . 

2. Always get an optimization report. I f the percentage reduc
t i o n of the least-squares e r r o r i s 0.00%, do not repeat the l a s t 
type of optimization performed. 

3 . I f a simplex o p t i m i z a t i o n has not converged f o r a model with 
at l e a s t two parameters a f t e r many i n t e r a c t i o n s , and the l e a s t -
squares error reduction i s 0.00%, then something i s wrong with the 
rat e law equation or the r a t e law f i l e . 

Having EXPERT operate PENNZYME under p a r t i c u l a r l y favorable 
conditions i s expected to be straightforward to the point of being 
u n i n t e r e s t i n g . Obtaining the percentage reduction r e s u l t i n g from a 
given o p t i m i z a t i o n and deciding from i t s value and place i n pattern 
of operations and r e s u l t i n g values what operation to ask f o r next 
would be conceptually s i m i l a r to the usual one-query-at-a-time 
d i r e c t e d to a human user of the usual expert system. Determining 
what i s wrong with a ra t e law f i l e (which i s not a common problem) 
would normally r e q u i r e user i n t e r v e n t i o n . At the other extreme, t h i s 
program combination w i l l not be able to extract from a poor data set 
information that i s not there to begin with. The most u s e f u l a p p l i 
c a t i o n i s to the intermediate s i t u a t i o n , where there i s u s e f u l but 
l i m i t e d or noisy data, or where the experimental design i s not o p t i 
mal. 

Experimental Design. I t i s now p o s s i b l e , but inconvenient, to use 
PENNZYME i n an inverse mode, by determining the parameters i n a r a t e 
law and then manipulating the chemical concentrations so as to f i n d 
the point i n concentration space that maximizes a given e f f e c t . An 
immediate a p p l i c a t i o n i s to maximize the d i f f e r e n c e between two r a t e 
laws by means of a d i s c r i m i n a t i o n f u n c t i o n (2). This amounts to de
signing a c r i t i c a l experiment to d i s t i n g u i s h between them. The user 
who has as an appropriate set of experimental data of s u f f i c i e n t l y 
good q u a l i t y and two a l t e r n a t i v e r a t e laws that might f i t i t could 
have the EXPERT-PENNZYME combination: 

(a) Find the optimal parameters f o r these r a t e laws; 
(b) Determine the point(s) or region(s) i n concentration space 

where they d i f f e r most (following ( 2 ) ) ; 
(c) Recommend one or more experimental measurements at those 

po i n t s . 
In designing sequential experimental measurements or groups of 

them, other functions that might be performed with appropriate 
c a l c u l a t i o n s are: 

(1) Minimize the confidence l i m i t or variance of a given para
meter, such as a M i c h a e l i s constant. This requires p i c k i n g a point 
or points i n concentration space where the value of the parameter i s 
maximally s e n s i t i v e to the experimental r e s u l t obtained, i . e . , a 
k i n e t i c constant b a s i c a l l y representing the binding of a small 
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molecule i s insensitive to measurements where i t s binding i s very 
small or very large, and more sensitive to measurements where i t s 
binding i s near half maximal. 

(2) Maximize or minimize information or design matrices. 
While performing the Fletcher-Powell optimization, PENNZYME 

calculates the variance-covariance matrix of the parameters. This 
can be used to test model acceptability: the parameters of a good 
model should be r e l a t i v e l y (although never completely) independent 
of each other; i f they are not, there i s something questionable 
about i t . More important, th i s matrix i s also usable for design 
calculations. Endrenyi (12) points out "optimal designs aim at 
minimizing the volume of the j o i n t confidence region of the para
meters. In the linear least-square approximation, this i s propor
t i o n a l to the determinant of the parameter variance-covariance 
matrix V . . ." The important D-optimality c r i t e r i o n maximizes the 
determinant of the information matrix which i s proportional to i t s 
inverse. (Other optimality c r i t e r i a may be more robust or better i n 
special situations.) The necessary matrix manipulations can be co
ordinated with the PENNZYME program using existing matrix manipula
tion software packages. Appropriate expert rules to use such 
computations to design experiments would then have to be derived. 
These would have to consider the probable accuracy or d i f f i c u l t y of 
a given measurement. A small net signal above a large background 
noise w i l l probably be inaccurate. An experimenter might prefer two 
measurements under convenient conditions to one measurement under 
inconvenient (or scarce-material consuming) ones. Considerations of 
minimizing experimenter's e f f o r t , number of animals used, etc. can 
either be included in a body of rules, or by adding some kind of 
penalty function to the calculations. 

Special consideration of metal ions. The effects of metal ions such 
as magnesium ion could be calculated by effectively incorporating 
into this system the software described previously. Qualitative 
considerations could then be included by assembling a set of know
ledge rules applicable to magnesium ion behavior with regard to 
enzymes, e.g. 

Magnesium ion i s usually involved (for "charge neutralization") 
where "high-energy phosphate" i s moved from one molecule to another 
by an enzyme, i. e . , the metabolically active form of ATP i s usually 
the magnesium chelate. 

The ensemble of EXPERT plus data knowledge bases and calculation 
routines would then be used to solve problems such as determining a 
change in enzyme a c t i v i t y on changing metal ion l e v e l — o r determining 
whether there i s an effective change in mechanism as well. 
Pharmacokinetics and Drug Dosage Regimen Design—A Possible Applica
tion Requiring Construction and Manipulation of a Complex Model and 
Data Base with an Expert System 

A major part of the slow and expensive drug development process con
s i s t s of testing to determine that a given potential drug i s both 
safe and effective. The number of drug (or cosmetic) t o x i c i t y tests 
performed annually in the United States i s very large, involving 
perhaps 15 m i l l i o n animals and considerably more dollars. The 
expense of testing and q u a l i f i c a t i o n may be prohibitive for use i n 
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animals: i t may cost more to prove a drug safe and effective in a 
given species than could ever be earned by sales for use i n that 
species. The techniques used, especially to test t o x i c i t y , are now 
being strongly c r i t i c i z e d , especially because of the large number of 
animal-based experiments. Computer-based methods of predicting 
t o x i c i t y from the chemical structure are being developed i n response 
to th i s problem. 

An suitable expert system which can manage pharmacokinetic simu
la t i o n could substantially improve the speed and efficiency of this 
process. Such a system would contain information about drugs, drug 
metabolism, excretion, etc. and the relevant physiological para
meters. I t would supervise construction of models from quantitative 
measurements of the behavior of the drug under test i n animals. The 
expert system would be needed because large-scale biolog i c a l modeling 
has thus far been slow. Also, pharmacokinetic modeling has empha
sized simple systems and given l i t t l e attention to qualitative data 
or to extrapolation from one species to another. 

Modeling Considerations. Drugs for internal use must enter the body 
in some way, reach the blood stream, be transported to the relevant 
organs and active s i t e s , exert their action, perhaps be metabolized 
or modified, with subsequent departure from the body. These pro
cesses involve the action of enzymes and of k i n e t i c a l l y similar 
transport mechanisms, so the techniques and software described above 
(an expert system involving EXPERT and PENNZYME) are applicable here. 
The major variable which th i s type of analysis would try to predict 
and manage i s the (free) plasma level of a drug. This lev e l i s 
l i k e l y to be identical to the drug l e v e l at the s i t e of action. I t 
has been shown to be d i r e c t l y related to therapeutic effect for many 
drugs—but less closely related to the dose administered. Important 
theoretically predictable perturbing factors here include disease 
conditions such as renal f a i l u r e , old age, and physiological factors; 
an important but unpredictable one i s f a i l u r e to take a drug as d i 
rected. The effects of such factors on the behavior and apparent 
t o x i c i t y of a given drug would require systematic exploration with 
appropriate models, which i s best supervised by an expert system 
because i t would otherwise take too long. 

Compartments between which drugs do not mix, or mix only slowly, 
commonly exist i n the body. Metabolism within them i s carried out 
and controlled by enzymes i n the usual way. These compartments can 
be detected by time-curve analysis of the blood levels of drugs. 
Compartments determined in this way have the limitations that: 

1. They are d i f f i c u l t to predict a p r i o r i ; 
2. Their structure may depend on particular numerical values 

associated with a system under study as well as i t s structure or 
organization; 

3. Sometimes different competent workers disagree as to the 
compartmental structure of the same system. 

An important methodology of extrapolating pharmacokinetic or 
drug properties from one species to another which i s r e l a t i v e l y i n 
dependent of such compartmental modeling has been developed by 
Bischoff and collaborators (13). I t i s instead based on known ana
tomical and physiological functions, such as blood flow to organs 
which either metabolize drugs or are affected by them, the size and 
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metabolic r a t e of the animal, etc. To some extent t h i s approach 
("physiological pharmacokinetics") i s a chemical engineer's formula
t i o n of pharmacokinetic problem. The r a t e at which a given drug i s 
d e l i v e r e d to a metabolizing or target organ by the plasma (with i t s 
l e v e l of drug) i s c a l c u l a t e d along with the rates of metabolism or 
d e t o x i f i c a t i o n by such organs, as w e l l as the r a t e of removal of the 
drug (or i t s metabolites) from the body. From t h i s information the 
t o t a l and f r e e ( a f t e r binding to p r o t e i n s , etc.) organ content of the 
drug and the l e v e l at the a c t i v e s i t e i s c a l c u l a t e d . This method i s 
based on the o r d e r l y change of many anatomical and p h y s i o l o g i c a l 
p r o p e r t i e s with body weight. Anatomical dimensions increase n e a r l y 
l i n e a r l y with weight, while p h y s i o l o g i c a l rates vary as the .7 to .8 
power (14). P h y s i o l o g i c a l processes are therefore slower i n l a r g e r 
animals; the cardiac output of a mouse per body weight i s about an 
order of magnitude higher than that of a man. This trend i s coherent: 
the d i s p o s i t i o n h a l f - l i f e of hexobarbital approximates 1,680 gut-
beats i n a wide v a r i e t y of mammals (14). Dedrick (15) has described 
a formalism f o r animal scale-up. General a p p l i c a t i o n of t h i s method 
would re q u i r e assembly at a data base with s i z e s of and blood flows 
to the most important organs, excretory capacity and r e n a l functions, 
etc . , and even p r e d i c t i o n of p o t e n t i a l compartmental s i z e s where 
p o s s i b l e . 

The comparative behavior of a few drugs has been thoroughly 
studied by these workers, with the l a r g e s t e f f o r t d i r e c t e d to metho
trexate (16). This drug c o n s t i t u t e s a good t e s t case because i t s 
mechanism of a c t i o n i s well-known and simple, the amount of informa
t i o n about i t i s very l a r g e , and i t now appears a p p l i c a b l e to two 
unrelated therapeutic s i t u a t i o n s r e q u i r i n g d i f f e r e n t dosage l e v e l s . 
B i s c h o f f et a l were able to f i t s u b s t a n t i a l l y the same model to data 
f o r mouse, r a t , dog ( i n c l u d i n g dogs of d i f f e r e n t s i z e s ) , monkey, and 
man. They were then able to s u c c e s s f u l l y extrapolate from these 
mammalian studies a l l the way to the s t i n g ray, which i s z o o l o g i c a l l y 
a v a r i e t y of shark (17). 

A second l e v e l of s o p h i s t i c a t i o n i s p o s s i b l e here. To quote 
from B i s c h o f f (18), "Williams notes that f o r e i g n organic compounds 
tend to be metabolized i n two phases. Phase one r e a c t i o n s lead to 
oxidation-reduction and h y d r o l y s i s products. Phase two reactions 
lead to s y n t h e t i c or conjugation products that are r e l a t i v e l y polar 
and are thus more e a s i l y excreted". Species v a r i a t i o n s of phase one 
re a c t i o n s are very common but hard to p r e d i c t ; phase two r e a c t i o n s 
are much more l i m i t e d i n number and more p r e d i c t a b l e . A more power
f u l expert system could probably make u s e f u l p r e d i c t i o n s of the 
q u a n t i t a t i v e behavior of t o x i c metabolites of drugs and perhaps help 
get an i n d i c a t i o n of what presently unkown species-dependent t o x i c i 
t i e s might be. For t h i s purpose the admittedly incomplete informa
t i o n on which pathways of d e t o x i f i c a t i o n and other metabolism are 
present i n which organ and how a c t i v e they are, would have to be 
c o l l e c t e d ( t h i s includes h e u r i s t i c s as w e l l as hard data i n c l u d i n g 
the types of information mentioned above). Some of the unpredicta
b i l i t i e s as to which t o x i c products might be formed by the l i v e r of 
what species might be compensated f o r by a p p r o p r i a t e l y designed ex
periments with such l i v e r s or t i s s u e c u l t u r e s derived from them). 

One could set up an expert system by i n t e r f a c i n g a s u i t a b l e 
simulation program with EXPERT. Good optimi z a t i o n c a p a b i l i t i e s and 
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a b i l i t y to handle design o p t i m a l i t y problems l i k e those mentioned 
above are important i n the simulation program, i n a d d i t i o n to the 
good data-base and explanation c a p a b i l i t i e s of EXPERT. Such an ex
pert system could then b u i l d m u l t i - s p e c i e s pharmacokinetic models by 
the method of B i s c h o f f and Dedrick. A f t e r repeating t h e i r work as 
the t e s t case, t h i s expert system could be used f o r the other drugs 
whose k i n e t i c s have been s u f f i c i e n t l y studied ( i n c l u d i n g sampling i n 
several t i s s u e s ) as required f o r such a n a l y s i s . Subsequent extension 
to include a d d i t i o n a l methodologies i s p o s s i b l e (e.g. d e t a i l e d repre
sentation of enzyme k i n e t i c s ) . Model co n s t r u c t i o n with only part of 
the o r i g i n a l data could then be repeated to determine the need f o r 
completeness of (experimentally determined) information, i . e . , which 
and how many animal experiments are r e a l l y necessary. Such consider
ations are important i n drug t e s t i n g , and an expert system would help 
both by doing the modeling f a s t e r than a human, and a l s o more 
sy s t e m a t i c a l l y . 

A w e l l - e s t a b l i s h e d s p e c i a l i z e d expert system with which the 
proposed expert system could be compared i s the d i g i t a l i s advisor of 
S z o l o v i t z and Long (19) which represents a well-understood c l i n i c a l 
s i t u a t i o n . I t performs c l i n i c a l functions beyond the scope of t h i s 
proposed system, but i t does do some things, l i k e maintaining the 
blood l e v e l of the drug involved, and monitoring i t s t o x i c i t y , that 
t h i s proposed system i s concerned with and should perform adequately. 

S t a r t i n g with appropriate knowledge of the behavior of a pros
pective drug i n one species one could then extrapolate to other 
species, u l t i m a t e l y i n c l u d i n g humans. This c a p a b i l i t y could be used 
i n t e s t i n g a proposed drug to determine proper dosage and regimen 
under what conditions i t (and p o s s i b l y i t s metabolites) i s t o x i c , and 
how s e n s i t i v e i t s behavior might be to perturbing co n d i t i o n s , which 
presently have to be re-performed f o r each species involved by empir
i c a l l y and h e u r i s t i c a l l y guided experiments. I t i s reasonable to 
hope f o r s i g n i f i c a n t l y improved e f f i c i e n c y i n performing these 
expensive operations. 

Conclusion 

We have described a set of a p p l i c a t i o n s of a conventional expert sys
tem which extend the usual functions of such systems from p r i m a r i l y 
l o g i c a l reasoning and s o l u t i o n of c l a s s i f i c a t i o n problems to include 
supervision of c a l c u l a t i o n s and of modeling, i . e . , systems manage
ment. A hierarchy of a p p l i c a t i o n s a r i s i n g from biochemical research 
have been discussed. These f o l l o w b i o l o g i c a l systems i n being p r i 
m a r i ly chemical at the lowest l e v e l but acquire more b i o l o g i c a l 
character at the higher l e v e l s . At the lowest l e v e l , these permit 
the convenient performance of c a l c u l a t i o n which i s not being done or 
done properly. At the intermediate l e v e l , they provide a better 
research t o o l , e s p e c i a l l y f o r experimental design. At the most com
plex l e v e l , they would permit a complex, slow, and expensive process 
to be c a r r i e d out with l e s s resource expenditure (calendar time, 
money, and animal experiments). 
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7 
An Expert System for the Formulation 
of Agricultural Chemicals 

Bruce A. Hohne and Richard D. Houghton 

Rohm and Haas Company, Spring House, PA 19477 

An expert system has been written which helps the 
agricultural chemist develop formulations for new 
biologically active chemicals. The decision making 
process is segmented into two parts. The first is 
which type of formulation to use. The second is how 
to make a formulation of that type with the chemical 
of interest. The knowledge base currently contains 
rules to determine which formulation type to try and 
how to make an emulsifiable concentrate. The next 
phase will add rules on how to make other types of 
formulations. The program also interfaces to several 
FORTRAN programs which perform calculations such as 
solubilities. 

What Is An Agricultural Formulation 

An essential part of the development of a new pesticide i s 
establishing a good, dependable formulation. The product's active 
ingredient and physical properties should remain acceptable for two 
years or more. These formulations are often subjected to storage 
conditions of extreme heat, cold, and humidity. Once sold to the 
applicator, the concentrated formulation should dilute easily to 
f i e l d strength and pass freely through conventional spray equipment. 

Agricult u r a l (Ag) formulations that are commonly diluted and 
applied by means of spray equipment include water soluble l i q u i d s , 
emulsifiable concentrates, wettable powders, and flowable 
suspensions. The choice of which formulation to develop normally 
depends upon the s o l u b i l i t y properties of the technical pesticide. 
Scientists often must also consider manufacturing costs, f i e l d 
efficacy and product t o x i c i t y . 

A water soluble l i q u i d formulation (WSL) i s prepared from 
pesticides that are highly water soluble. This i s , by far, the 
simplest type of formulation. One d i s t i n c t advantage of WSL1s over 
other formulations i s that the f i e l d spray dilutions are i n f i n i t e l y 
stable as true solutions. Pesticides that are hydrophilic and 
ionic, such as inorganic or organic metallic s a l t s , often f a l l into 
this category. Unfortunately, only a small portion of a l l 
pesticides are adequately soluble i n water. 

0097-6156/86/0306-O087$06.00/0 
© 1986 American Chemical Society 
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An emulsifiable concentrate i s prepared from pesticides that 
are soluble i n common organic solvents, such as xylene and kerosene. 
Using emulsifiers i n the composition causes the formulation to 
disperse into small p a r t i c l e s , called an emulsion, when diluted i n 
water. 

Pesticides that are not soluble or have limited s o l u b i l i t y i n 
common solvents are formulated as wettable powders (WP) or flowable 
concentrates (flowables). A wettable powder has the capacity for 
high active ingredient content, often between f i f t y and eighty 
percent by weight, and i s made by blending and grinding dry 
ingredients. Wettable powders are best prepared from pesticides 
that are high melting, f r i a b l e solids. Diluents, such as natural 
clays and synthetic s i l i c a t e s , are used to improve the powder's 
physical properties. The disadvantages of a WP are: messy handling 
properties; potential dust inhalation hazard for f i e l d personnel; 
and the need to measure the powder on a weight basis. In some cases 
these problems can be overcome by formulating the pesticide into a 
suspension. Water and other ingredients are added to the 
composition to suspend and disperse the active compound into a 
flowable. 

Regardless of what type of formulation i s employed i n the 
f i e l d , the formulation must wet, disperse, and remain homogeneous i n 
the application spray equipment. Careful selection of formulating 
agents, commonly called inerts, i s extremely important. These 
ingredients have no b i o l o g i c a l a c t i v i t y of their own, but combined, 
they function as the delivery system for the pesticide. 

In addition to solvents and diluents, formulations may contain 
emulsifiers, dispersants, chelating agents, thickeners, defoamers, 
and more. The large number and variety of each type makes selecting 
the components for a formulation d i f f i c u l t and time consuming. 

Why Is This A Good Area for an Expert System 

The process of choosing application areas for expert system 
development has been detailed elsewhere, both for the general case 
and the corporate environment [1]. There are several spe c i f i c 
advantages i n the formulations application. Experts on one type of 
formulation are not necessarily experts on other formulation types. 
Expertise i n Ag formulations tends to be i n the form of 'rules of 
thumb', based on experiences with similar chemical systems. 
Incremental growth, l i k e t h i s , i s ideal for expert system 
development. Formulation sc i e n t i s t s are also l i k e l y to be more 
tolerant of the program's mistakes because their s k i l l i s measured 
by how few bad formulations they make before they make a good one. 

M u l t i l e v e l expert systems offer additional advantages over 
t r a d i t i o n a l expert systems. Mul t i l e v e l expert systems draw on 
computational computer programs to solve parts of the problem. The 
Ag formulation expert system does this i n the areas of computational 
chemistry, bookkeeping, and communication. 

There are numerous computational programs available to chemists 
today. These programs are algorithmic by nature, and solve problems 
that do not lend themselves to expert systems. However, a great 
deal of expertise may be needed by the chemist to decide which 
program to use and how to actually use i t . Most chemists do not 
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7. H O H N E A N D HOUGHTON Formulation of Agricultural Chemicals 89 

have, and are not w i l l i n g to gain, this computer expertise. Some 
would rather use t r a d i t i o n a l , noncomputational, methods rather than 
navigate the maze of available computer programs and users manuals. 
Expert systems can be extremely valuable i n providing this expertise 
to chemists. 

The Ag formulations expert system has the a b i l i t y to execute 
the appropriate computational programs, giving i t an advantage over 
the formulation chemist. Bookkeeping tasks are generally handled 
better by a computer than a chemist. For example, time tables must 
be met for long term storage studies, toxicology data, and 
government registrations. These tasks are easily handled by the 
computer. 

The expert system f i l l s several potential communication gaps. 
Molecular modeling calculations which are performed by the synthetic 
chemists, outside the formulation area, can be accessed by the 
expert system. Through this interface, the expert system can 
extract useful, structural information d i r e c t l y . Also, i f a 
structure has not been entered, the formulation chemist can use the 
modeling program to enter the structure into the computer. In 
addition, the system safeguards against communication gaps between 
the chemist and management/marketing by including marketing and 
production considerations i n the rule base. In this way, management 
can determine which new formulations are possible, and what 
characteristics they w i l l s a c r i f i c e with a particular formulation. 

Structure of the Problem 

The problem of devoloping a new formulation i s highly structured. 
The structure tends to be hierarchical, although this hierarchy does 
not resemble a t r a d i t i o n a l decision tree. Each branch point may 
have any number of branches. The decision about which 'branch' to 
take at each l e v e l can be viewed as an independent expert system. 
The a b i l i t y to break the overall problem into smaller, simpler 
subproblems i s desirable for expert systems. 

Many of the facts i n the system are shared by several 
subproblems, and subproblems must be. developed by starting at the 
top of the hierarchy and working down. Other than these 
stipulations, they are independent problems. Each branch of the 
tree can be used independently, and need not be complete to be 
useful i n the formulation study. The expert system's competence on 
each subproblem can be judged independently. In many cases 
different experts are used to develop the knowledge bases for 
different subproblems. Figure 1 shows the structure of the problem, 
tracing one branch from each l e v e l . 

Structure of the Expert System 

The program was written on an Apollo computer i n LISP. Apollo's 
Domain LISP, a version of Portable Standard LISP, was the dialect 
available. 

The expert system has been written to follow the natural 
structure of the Ag formulation problem. Figure 2 shows the overall 
structure of the expert system. One nice feature of the program i s 
that at each branch point the user can override the computer's 
choice, and can also select as many branches to pursue as desired. 
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Figure 2. Structure of the Program 
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The l o g i c a l deduction portion of the program i s based on 
IF-THEN rules. FACTS, acquired both as the result of l o g i c a l 
deductions and by querying the user, are stored i n similar data 
structures. Because the branch points i n the problem are also 
l o g i c a l deductions, they are stored i n a data structure similar to 
the FACTS. The branch points contain additional flow of control 
information that relates to the hierarchy of the problem. The 
difference between FACTS and branch points i s transparent to the 
l o g i c a l deduction portion of the program. 

The top l e v e l i n the structure of FACTS i s the fact name, e.g., 
ACTIVE_INGREDIENT. Under each fact are various properties relevant 
to that fact, e.g., H20_S0LUBILITY. For each property, several 
pieces of information are stored (see Figure 3). A l l properties 
contain a VALUE, which i s i n i t i a l i z e d to a n u l l or missing value. 
They also contain the method to obtain the VALUE. Currently 
supported methods are ASKIT, PROVEIT, and CALL. 

Fact name 
Property 1 

Value 
Where to fi n d i t (Ask, prove, calculate) 
Prompt (How to ask user) 
Allowable response (Checks user's response) 
Explanation (For prove and calculate) 

Property 2 
Value 

Figure 3. Structure of Facts 
I f the method for acquiring a VALUE i s ASKIT, then a user 

PROMPT i s stored. In order to guarantee a v a l i d response to the 
question, a LISP function to check the answer i s included with the 
FACT. Table I l i s t s the currently implemented response checking 
functions. Whenever the inference engine reaches one of these 
facts, searching i s stopped and the user i s prompted for a value. 

Table I. User Input 

Function Allowed Response 
PercentP Positive integer between 1 and 100 
Yes_NoP Yes, No, Υ, Ν 
Any_0f Any number of members of the l i s t e d p o s s i b i l i t i e s 
0ne_0f One member of the l i s t e d p o s s i b i l i t i e s 
PositiveP Any positive number 
ImportanceP High, Med, Low, H, M, L 
IntegerP Any positive or negative integer 
Integer_listP A l i s t of integers seperated by spaces 
Minusl_to_0ne Any number between -1 and +1 

For values which must be deduced, a TEXT explanation i s saved. 
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This TEXT i s used i n the various explanation and tracing f a c i l i t i e s . 
Whenever the inference engine reaches one of these FACTS i t either 
continues i t s search, i f possible, or proceeds another l e v e l deeper 
i n the reverse search and t r i e s to prove that FACT. 

The CALL f a c i l i t y allows the expert system to access software 
external to the LISP program. Included with the CALL i s the name of 
a LISP function which handles the outside software. In the case of 
the fact CHEMICAL_NAME, the LISP function executes a FORTRAN program 
which allows the user to either retrieve the structure of a 
previously entered compound or enter a new one. The program also 
breaks the chemical structure into i t s functional groups. When the 
FORTRAN program terminates, the LISP function updates the l i s t of 
facts, and inserts the name into CHEMICAL_NAME and the functional 
groups into FUNCT_GROUPS. These FACTS are then available to the 
expert system. In this way, access to outside software i s 
completely data driven. 

The structure of the branch points i s the same as that of those 
FACTS which must be deduced, except for the additional control 
information. The properties correspond to the different branches i n 
the hierarchy at that point. Figure 4 shows the data structure of 
branch points. For each branch point (property), there i s a l i s t of 
rules which apply. By only considering rules applicable to the 
specif i c subproblem, the time required for searching i s d r a s t i c a l l y 
reduced. A l i s t of FACT-PROPERTY pairs, which are useful background 
information for the subproblem, i s also saved. This background 
information i s collected at the beginning of each subproblem and 
used i n a forward-chaining function. This approach can prevent the 
reverse chaining portion of the system from appearing as though i t 
i s "wandering" at the beginning of each subproblem. The f i n a l piece 
of control information i s the name of the next subproblem, and 
correspondes to the FACT name. These names are stored for each 
branch point. 

Conclusion Name 
Branch Point 1 

Value 
Where to find i t (prove) 
Explanation (T e l l the user i f i t i s true) 
Next l e v e l name 
Background facts (Questions always asked) 
Rule names (Li s t of relevant rules) 

Branch Point 2 
Value 

Figure 4. Structure of Conclusions 
Rules i n the expert system are structured to allow f l e x i b i l i t y 

and future expansion. For speed of execution, the IF-THEN clauses 
are actually executable LISP code. Tables I I and I I I contain 
examples of how rules are structured. The IF clauses contain 
functions, cal l e d predicates. Predicates have a value of either 
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true or false when evaluated. I f a l l the IF clauses are true, then 
the THEN clauses are executed. The THEN clauses contain ACTIONS 
which change the VALUEs of other FACTs. The PREDICATES and ACTIONS 
are the basic building blocks for a l l the rules i n the system. 
There i s no l i m i t to the number of IF or THEN clauses which a rule 
can contain. As more powerful rules are required, additional 
building blocks can easily be added by writing new PREDICATES or 
ACTIONS. 

Table I I . Structure of Rules 

AgRule_l 
If-1 (Isequal Active_Ingredient Desired_Level Value >40) 
Then-1 (Suggest Form_Type EC -.5) 
Then-2 (Suggest Form_Type WSL -.5) 
Then-3 (Suggest Form_Type Flowable -.5) 

Why EC's, WSL's and Flowables rarely have that high an AI l e v e l 
Date 11/14/83 
Author Houghton 

Agrulel 
IF 

1. The value of the active ingredient's desired concentration 
i s >40% 

THEN 
1. There i s suggestive evidence (-0.5) that the 
formulation type should not be emulsifiable concentrate 
2. There i s suggestive evidence (-0.5) that the 
formulation type should not be water soluble l i q u i d 
3. There i s suggestive evidence (-0.5) that the 
formulation type should not be flowable concentrate 

BECAUSE: 
EC's, WSL's and Flowables rarely have that high an AI le v e l 

Table I I I . Structure of Rules 

AgRule_13 
If-1 (Isequal Solvent Req_EPA_Clear Value C) 
Then-1 (Avoid NotEqual EC_Solvent EPA_Clear C -1) 

Why It ' s the law 
Date 12/20/83 
Author Hohne 

Agrulel3 
IF 

1. The value of the solvent's required EPA clearance 
i s C 

THEN 
1. Avoid (-1) emulsifiable concentrate solvents where EPA clearance 
i s not equal to C 

BECAUSE 
It's the law 
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The rule structure allows simple Boolean functions to be 
performed. Multiple numbered IF clauses are l o g i c a l l y ANDed 
together. Multiple clauses which are part of the same numbered IF 
are l o g i c a l l y ORed. The l o g i c a l NOT does not exist, but can be 
simulated using predicates with the opposite meaning i n the IF 
clause, ( i . e . BIGGER i s equivalent to NOT SMALLER). Table IV l i s t s 
the currently available predicates for IF clauses. 

Table IV. Relationships (predicates) 

Predicate Meaning 
BIGGER Bigger than 
SMALLER Smaller than 
MEMB Member of the l i s t 
NOTMEMB Not a member of the l i s t 
ISEQUAL Is equal to 
NOTEQUAL Not equal to 

The ACTIONS available to the THEN clauses are l i s t e d i n 
Table V. These ACTIONS give r i s e to two types of THEN clauses. The 
f i r s t type affects the VALUE of only one property. The THEN clauses 
i n Table II show the construction of one-property THEN clauses. The 
second type of THEN clause deals with a l l of the current branch 
points. Table I I I shows the construction of this type of THEN 
clause. 

Table V. Actions 

Action Meaning 
SUGGEST Adjust the property's value using the l i s t e d 

confidence factor 
SET_EQUAL Set the property's value equal to the l i s t e d value 
ORDER_BY Order the hypotheses by the value of the l i s t e d 

property 
AVOID Avoid conclusions where the requirement l i s t e d 

The inference engine was designed to use multivalued lo g i c , 
i.e., i t handles inexact reasoning. Confidence factors (CF) are 
contained i n the THEN clauses of each rule. The equation for 
combining positive confidences i s : 

CF - old_value + new_value - (old_value X new_value) 

The equation for negative confidences i s : 

CF » old_value + new_value + (old_value X new_value) 

For mixed positive and negative confidences, a simple sum i s 
used. The advantage to these functions i s they are bounded by -1 
and +1. 

The program also handles exact reasoning through the SET_EQUAL 
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ACTION i n the THEN clause. This ACTION can be used to set a 
confidence value to +1 (true) or -1 (f a l s e ) , regardless of 
previously compiled confidences. SET_EQUAL can also be used to set 
FACT values equal to nonnumeric values, where required. 

The natural language interpretation of the rules given at the 
bottom of Tables II and I I I was generated by the program. The 
natural language generator uses synonyms for FACT names and 
properties. The synonyms are simply substituted into one of several 
templates to generate a sentence. The template used i s determined 
by the value of the confidence factor and the combination of ACTIONS 
and PREDICATES. 

Current Status of the Project 

The project i s s t i l l i n the prototype stage. I t i s being used, but 
not widely. Presently, the knowledge base for the system has less 
than 100 rules. This number i s misleading because a l l the work 
performed by the FORTRAN programs i s not counted i n the number of 
rules. These programs give the system far more knowledge than would 
be expected from the 'small' knowledge base. 

The system can help s c i e n t i s t s r e l i a b l y determine what type of 
formulation to make. However, the only branch of the decision tree 
which has rules i s the emulsifiable concentrates (EC) branch. The 
system can determine which solvents to try to make an EC. Its 
decision r e l i e s heavily on rules and s o l u b i l i t y calculations. Work 
i s j u s t beginning on the rules to determine which emulsifiers to 
use. 

The program has been interfaced to two FORTRAN programs. The 
f i r s t , MOLY, i s a l o c a l l y developed product for chemical structure 
entry, display, and molecular modeling [2]. The expert system only 
takes advantage of the chemical structure handling portion of the 
program. The other program, UNIFAC [3], performs s o l u b i l i t y 
calculations for the active ingredient i n a group of solvents of 
interest to formulation chemists. 

The inference engine performs both forward and 
reverse-chaining. The reverse-chain algorithm i s a depth f i r s t 
search. Using this algorithm, questions asked by the system are 
grouped by subject, making the program appear more l o g i c a l to the 
user. The program handles exact and inexact logic calculations and 
explains, i n English, why a question was asked and how a conclusion 
was reached. The program also allows the s c i e n t i s t to change 
answers i n case of mistakes, or to investigate "what i f " scenarios. 

Directions for Future Development 

Future developments f a l l into two classes: additions to the 
knowledge base and enhancements to the program. As the program i s 
used by more people, fine tuning of the rules to select which type 
of formulation to try w i l l be needed. Work, from that point, w i l l 
continue on the emulsifiable concentrate branch. The solvent 
selection portion w i l l require some fine tuning, but the major work 
i s i n adding to the l i s t of solvents. The emulsifier selection 
portion of the knowledge base w i l l d e f i n i t e l y require additional 
rules, to be followed by considerable tuning as i t i s used. The 
remaining four formulation types have yet to be started. They w i l l 
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require different experts and can be developed concurrently with the 
EC portion. 

The f i r s t major enhancement to the program w i l l be the a b i l i t y 
to stop sessions at any point and restart at the same point at a 
late r time. This capability w i l l be more than just a convenience, 
i t w i l l be necessary to make the laboratory results requested by the 
program useful. After this addition, the next major enhancement 
w i l l be to develop a method of using the rules to trouble-shoot 
f i e l d problems. This enhancement w i l l involve adding some rules, 
but most of the knowledge should already be i n the knowledge base. 
As the program becomes widely used, the a b i l i t y to generate reports 
and data sheets for laboratory results w i l l be a valuable addition. 
The added a b i l i t y to remind the s c i e n t i s t about certain deadlines 
for a project may be easily included, but w i l l not be useful u n t i l 
s c i e n t i s t s use the Apollo computer regularly. 

The expert system currently has no rule entry or maintenance 
f a c i l i t i e s . Rules are entered and modified using the Apollo 
computer text editor. This i s acceptable for a prototype, but not 
for a production system. Before these f a c i l i t i e s are added, i t s 
cost and c a p a b i l i t i e s w i l l need to be compared to those of 
commercial expert systems. 
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8 
Computer Algebra: Capabilities and Applications 
to Problems in Engineering and the Sciences 

Richard Pavelle 

MACSYMA Group, Symbolics, Inc., Cambridge, M A 02142 

MACSYMA is a large, interactive computer system 
designed to assist engineers, scientists, and 
mathematicians in solving mathematical problems. A user 
supplies symbolic inputs and MACSYMA yields symbolic, 
numeric or graphic results. This paper provides an 
introduction to MACSYMA and provides the motivation for 
using the system. Many examples are given of MACSYMA's 
capabilities with actual computer input and output. 

My purpose i n t h i s paper i s to p rov ide a broad i n t r o d u c t i o n to the 
c a p a b i l i t i e s of MACSYMA. I t i s my hope that t h i s i n fo rma t ion w i l l 
c rea te new users of Computer A l g e b r a systems by shoving what one 
might expect to g a i n by us ing them and what one w i l l l o se by not 
us ing them* 

MACSYMA output i s used and CPU times are o f t en g i v e n . In some 
cases I have m o d i f i e d the output s l i g h t l y to make i t more 
p r e s e n t a b l e . The CPU times correspond to a Symbolics 3600 and to the 
MACSYMA Consort ium machine (MIT-MC) which i s a D i g i t a l Equipment 
K L 1 0 . These are about equal i n speed and about twice as f a s t as a 
D i g i t a l Equipment VAX 11/780 f o r MACSYMA computat ions . When CPU 
times are not g i v e n one may assume the c a l c u l a t i o n r e q u i r e s a t most 
10 CPU seconds. 

What i s MACSYMA. The development of the Computer A l g e b r a system, 
MACSYMA» began a t MIT i n the l a t e 60s» and i t s h i s t o r y has been 
desc r ibed elsewhere Q . ) . A few f a c t s worth r epea t ing are tha t a 
grea t dea l of e f f o r t and expense vent i n t o MACSYMA. There are 
es t imates tha t 100 man-years of deve lop ing and debugging have gone 
i n t o the program. Whi le t h i s i s a l a r g e number, l e t us cons ide r the 
even l a r g e r number of man-years us ing and t e s t i n g MACSYMA. A t MIT, 
betveen 1972 and 1982, we had about 1000 MACSYMA use r s . I f ve had 50 
se r i ous users us ing MACSYMA f o r 50% of t h e i r t ime , 250 casua l users 
a t 10% and 700 inf requent users at 2% then the t o t a l i s over 600 
man-years . MACSYMA has been a t 50 s i t e s f o r four years and i s a t 

0097-6156/ 86/ 0306-0100506.00/ 0 
© 1986 American Chemical Society 
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8. PAVELLE Computer Algebra: Capabilities and Applications 101 

400 s i t e s today. W e l l , we cou ld conclude that a t l e a s t 1000 
man-years have been spent i n us ing MACSYMA. MACSYMA i s now very 
l a rge and c o n s i s t s of about 3000 l i s p subrout ines or about 300,000 
l i n e s of compiled l i s p code j o i n e d together i n one g i a n t package f o r 
performing symbolic mathematics . 

Whi le t h i s paper i s d i r e c t e d towards MACSYMA, the development 
of MACSYMA and other Computer A l g e b r a systems has r e a l l y been the 
r e s u l t of an i n t e r n a t i o n a l e f f o r t (.2). There are many systems, 
w o r l d - w i d e , of v a r i o u s s i z e s and designs which have been developed 
over the past f i f t e e n to twenty years ( 3 , 4 ) . Research r e l a t e d to 
the development of these systems has l e a d to many new r e s u l t s i n 
mathematics and the c o n s t r u c t i o n of new a l g o r i t h m s . These r e s u l t s i n 
t u r n helped the development of MACSYMA as w e l l as o ther systems. 
These systems are now being recogn ized as important t o o l s a l l o w i n g 
researchers to make s i g n i f i c a n t d i s c o v e r i e s i n many f i e l d s of 
i n t e r e s t ( 5 ) . 

Why MACSYMA i s Use fu l or Necessary . Here are some of the more 
important reasons f o r us ing MACSYMA: 

1. The answers one ob ta ins are exact and can o f ten be checked by 
independent procedures . For example, one can compute an i n d e f i n i t e 
i n t e g r a l and check the answer by d i f f e r e n t i a t i n g ; the 
d i f f e r e n t i a t i o n a l g o r i t h m i s independent of the i n t e g r a t i o n 
a l g o r i t h m . S ince exact answers are g i v e n , the s t a t i s t i c a l e r r o r 
a n a l y s i s a s s o c i a t e d w i t h numer ica l computation i s unnecessary. One 
ob ta ins answers tha t are r e l i a b l e to a h igh l e v e l of conf idence . 

2 . The user can generate FORTRAN express ions tha t a l l o w numeric 
computers to run f a s t e r and more e f f i c i e n t l y . Th i s saves CPU c y c l e s 
and makes computing more economical* The user can generate FORTRAN 
express ions from MACSYMA express ions* The FORTRAN c a p a b i l i t y i s an 
extremely important fea ture combining symbol ic and numeric 
c a p a b i l i t i e s . The t rend i s c l e a r , and i n a few years we w i l l have 
power fu l , inexpens ive desktop or notebook computers tha t merge the 
symbo l i c , numeric and g raph ic c a p a b i l i t i e s i n a s c i e n t i f i c 
w o r k s t a t i o n . 

3 . The user can exp lo re extremely complex problems tha t cannot be 
so lved i n any other manner. Th i s c a p a b i l i t y i s o f ten thought of as 
the major use of Computer A l g e b r a systems. However, one should not 
l o se s i g h t of the f a c t that MACSYMA i s o f ten used as an advanced 
c a l c u l a t o r to perform everyday symbol ic and numeric problems. I t 
a l s o complements conven t iona l t o o l s such as re ference t ab l e s or 
numeric p r o c e s s o r s . 

4 . A grea t dea l of knowledge has gone i n t o the MACSYMA knowledge 
base. Therefore the user has access to mathemat ical techniques tha t 
are not a v a i l a b l e from any other r e sources , and the user can so lve 
problems even though he may not know or understand the techniques 
tha t the system uses to a r r i v e at an answer. 

5 . A user can t e s t mathemat ical conjec tures e a s i l y and p a i n l e s s l y . 
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One f r equen t ly encounters mathematical r e s u l t s i n the l i t e r a t u r e and 
ques t ions t h e i r v a l i d i t y . Often MACSYMA can be used to check these 
r e s u l t s u s ing a l g e b r a i c or numeric techniques or a combinat ion of 
these . S i m i l a r l y one can use the system to show that some problems 
do not have a s o l u t i o n . 

6 . MACSYMA i s easy to use. I n d i v i d u a l s wi thou t p r i o r computing 
exper ience can l e a r n to so lve f a i r l y d i f f i c u l t problems w i t h MACSYMA 
i n a few hours or l e s s . Whi le MACSYMA i s w r i t t e n i n a d i a l e c t of 
L I S P , the user need never see t h i s base language. MACSYMA i t s e l f i s 
a f u l l programming language, almost mathemat ical i n na tu re , whose 
syntax resembles ALGOL. 

There are two a d d i t i o n a l reasons f o r us ing MACSYMA tha t are 
more important than the o t h e r s . 

7 . One can concentra te on the i n t e l l e c t u a l content of a problem 
l e a v i n g computa t ional d e t a i l s to the computer. Th is o f ten r e s u l t s 
i n a c c i d e n t a l d i s c o v e r i e s and, owing to the power of the program, 
these occur at a f a r g rea te r r a t e than when c a l c u l a t i o n s are done by 
hand. 

8. But the most important reason i s t h a t , to quote R.W. Hamming, 
"The purpose of computing i s i n s i g h t , not numbers." Th i s e x e m p l i f i e s 
the major b e n e f i t of us ing MACSYMA, and I w i l l demonstrate the 
v a l i d i t y of t h i s statement by showing not on ly how one ga ins i n s i g h t 
but a l s o how one uses MACSYMA f o r theory b u i l d i n g . However, a second 
q u o t a t i o n reputed to be by Hamming i s c o r r e c t as w e l l , namely tha t 
"The purpose of computing i s not ye t i n s i g h t . " 

C a p a b i l i t i e s and uses o £ MACSYMA 

C a p a b i l i t i e s . I t i s not p o s s i b l e to f u l l y i n d i c a t e the c a p a b i l i t i e s 
of MACSYMA i n a few l i n e s s i nce the re fe rence manual i t s e l f occupies 
more than 500 pages (6.). However, some of the more important 
c a p a b i l i t i e s i n c l u d e ( i n a d d i t i o n to the b a s i c a r i t h m e t i c a l 
ope ra t ions ) f a c i l i t i e s to p rov ide a n a l y t i c a l t o o l s f o r 

L i m i t s Tay lo r S e r i e s ( S e v e r a l V a r i a b l e s ) 
D e r i v a t i v e s Po i s son S e r i e s 
I n d e f i n i t e I n t e g r a t i o n Laplace Transformat ions 
D e f i n i t e I n t e g r a t i o n I n d e f i n i t e Summation 
Ordinary D i f f e r e n t i a l Equat ions M a t r i x M a n i p u l a t i o n 
Systems of Equat ions (Non-Linear ) Vector M a n i p u l a t i o n 
S i m p l i f i c a t i o n Tensor M a n i p u l a t i o n 
F a c t o r i z a t i o n F o r t r a n Genera t ion 

There are other r o u t i n e s fo r c a l c u l a t i o n s i n number theory , 
comb ina to r i c s , cont inued f r a c t i o n s , set theory and complex 
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8. PAVELLE Computer Algebra: Capabilities and Applications 103 

arithmetic. There i s also a share li b r a r y currently containing 
about 80 subroutines. Some of these perform computations such as 
asymptotic analysis and optimization while others manipulate many of 
the higher transcendental functions. In addition one can evaluate 
expressions numerically at most stages of a computation. MACSYMA 
also provides extensive graphic capabilities to the user. 

To put the capabilities of MACSYMA i n perspective we could say 
that MACSYMA knows a large percentage of the mathematical techniques 
used i n engineering and the sciences. I do not mean to imply that 
MACSYMA can do everything. It i s easy to come up with examples that 
MACSYMA cannot handle, and I w i l l present some of these. Perhaps the 
following quotation w i l l add the necessary balance. It i s an exit 
message from some MIT computers that often flashes on our screens 
when logging out. It states: "I am a computer. I am dumber than any 
human and smarter than any administrator." MACSYMA i s remarkable i n 
both the questions i t can and cannot answer. It w i l l be many years 
before i t evolves into a system that r i v a l s the human i n more than a 
few areas. But u n t i l then, i t i s the most useful tool that any 
engineer or scientist can have at his disposal. 

Uses. It i s d i f f i c u l t to l i s t the application f i e l d s of MACSYMA 
because users often do not state the tools that helped them perform 
their research. However, from Computer Algebra conferences (7, &, 
9) we do know that MACSYMA has been used i n the following f i e l d s : 

Acoustics 
Algebraic Geometry 
Antenna Theory 
Celestial Mechanics 
Computer-Aided Design 
Control Theory 
Deformation Analysis 
Econometrics 
Experimental Mathematics 

Fluid Dynamics 
General Relativity 
Number Theory 
Numerical Analysis 
Par t i c l e Physics 
Plasma Physics 
Solid-State Physics 
Structural Mechanics 
Thermodynamics 

Researchers have reported using MACSYMA to explore problems i n : 

A i r f o i l Design Nuclear Magnetic Resonance 
Atomic Scattering Cross Sections Optimal Control Theory 
B a l l i s t i c Missile Defense Systems Polymer Modeling 
Decision Analysis i n Medicine Propeller Design 
Electron Microscope Design Robotics 
Emulsion Chemistry Ship Hull Design 
Fi n i t e Element Analysis Spectral Analysis 
Helicopter Blade Motion underwater Shock Waves 
Maximum Likelihood Estimation 
Genetic Studies of Family Resemblance 
Large Scale Integrated Circuit Design 
Resolving Closely Spaced Optical Targets 

Examples of MACSYMA 

Polynomial Equations. Here i s an elementary example that 
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104 ARTIFICIAL INTELLIGENCE APPLICATIONS IN CHEMISTRY 

demonstrates the a b i l i t y of MACSYMA to so lve equa t ions . In MACSYMA, 
as w i t h most systems, one has user input l i n e s and computer output 
l i n e s . Below, i n the input l i n e ( C I ) , we have w r i t t e n an exp re s s ion 
i n an ALGOL l i k e syntax , te rminated i t w i t h a s e m i - c o l o n , and i n 
(Dl ) the computer echos the exp re s s ion by d i s p l a y i n g i t i n a two 
d imens iona l format i n a form s i m i l a r to hand n o t a t i o n . Terminat ing 
an input s t r i n g w i t h $ i n h i b i t s the d i s p l a y of the D l i n e s . 

(CI) ΧΛ3+B*X~2+ΑΛ2*X~2-9*Α*ΧΛ 2+A~2*B*X-2*A*B*X-

9*A~3*X+14*A~2*X-2*A'S3*B+14*A~4=0; 

3 2 2 2 2 2 3 
(D l ) Χ + B X + A X - 9 A X + A B X - 2 A B X - 9 A X 

2 3 4 
+ 14 A X - 2 A B + 1 4 A « 0 

In (C2) we now ask MACSYMA to so lve the exp re s s ion (Dl ) f o r X 
and the three roo t s appear i n a l i s t i n (D2) . 

(C2) S0LVE(D1,X) ; 

2 
(D2) [X - 7 A - Β, X « - A , X » 2 A] 

No t i ce tha t MACSYMA has ob ta ined the roo t s a n a l y t i c a l l y and 
tha t numeric approximat ions have not been made. Th i s demonstrates a 
fundamental d i f f e r e n c e between a Computer A l g e b r a system and an 
o rd ina ry numeric equa t ion s o l v e r , namely the a b i l i t y t o o b t a i n a 
s o l u t i o n wi thou t approx imat ions . I cou ld have g i v e n MACSYMA a 
"numeric" cub ic equat ion i n X by s p e c i f y i n g numeric va lues f o r A and 
B . MACSYMA then would have so lved the equat ion and g i v e n the numeric 
roo t s approximate ly or e x a c t l y depending upon the s p e c i f i e d command. 

MACSYMA can a l s o so lve q u a d r a t i c , cub ic and q u a r t i c equat ions 
as w e l l as some c l a s se s of h igher degree equa t ions . However, i t 
o b v i o u s l y cannot so lve equat ions a n a l y t i c a l l y i n c l o s e d form when 
methods are not known, e . g . a gene ra l f i f t h degree (or h igher ) 
equa t i on . 

D i f f e r e n t i a l C a l c u l u s . MACSYMA knows about c a l c u l u s . In ( D l ) we 
have an exponent ia ted f u n c t i o n tha t i s o f t en used as an example i n a 
f i r s t course i n d i f f e r e n t i a l c a l c u l u s . 

(Dl ) 

X 
X 
X 
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8. PAVELLE Computer Algebra: Capabilities and Applications 105 

We now ask MACSYMA to d i f f e r e n t i a t e (D l ) w i t h respec t to X to 
o b t a i n t h i s c l a s s i c textbook r e s u l t of d i f f e r e n t i a t i o n . No t i ce how 
f a s t , 3/100 CPU seconds, MACSYMA computes t h i s d e r i v a t i v e . 

(C2) D I F F ( D 1 , X ) ; 
Time= 30 msec. 

X 
X X X - 1 

(D2) Χ (X LOG(X) (LOG(X) + 1) + X ) 

Below i s a more compl ica ted f u n c t i o n , the e r r o r f u n c t i o n of the 
tangent of the a r c - c o s i n e of the n a t u r a l l oga r i t hm of X . No t i ce tha t 
MACSYMA does not d i s p l a y the i d e n t i c a l i n p u t . Th i s i s because the 
input i n (CI) passes through MACSYMA's s i m p l i f i e r . MACSYMA 
recognizes tha t the tangent of the a r c - c o s i n e of a f u n c t i o n 
s a t i s f i e s a t r i g o n o m e t r i c i d e n t i t y , namely TAN(AC0S(X)) • 
SQRT(1-X"2) /X. I t takes t h i s i n t o account before d i s p l a y i n g ( D l ) . 

(CI) ERF(TAN(ACOS(LOG(X)))); 
2 

SQRT(1 - LOG ( X ) ) 
(D l ) ERF( ) 

LOG(X) 

Now when MACSYMA i s asked to d i f f e r e n t i a t e (D l ) w i t h respec t to 
X , i t does so i n a s t r a i g h t f o r w a r d manner and s i m p l i f i e s the r e s u l t 
us ing the r a t i o n a l c a n o n i c a l s i m p l i f i e r RATSIMP. Th i s command puts 
the expres s ion i n a numerator-over-denominator form c a n c e l i n g any 
common d i v i s o r s . In (D2) the symbols %E and %PI are MACSYMA's 
r ep re sen t a t i ons f o r the base of the n a t u r a l logar i thms and p i , 
r e s p e c t i v e l y . 

(C2) DIFF(D1,X),RATSIMP; 
Time= 1585 msec. 

1 
1 

2 
LOG (X) 

2 %E 
(D2) 

2 2 
SQRT(%PI) X LOG (X) SQRT(1 - LOG (X)) 

F a c t o r i z a t i o n 

MACSYMA can f a c t o r e x p r e s s i o n s . Below i s a m u l t i v a r i a t e po lynomia l 
i n four v a r i a b l e s . 

2 7 4 8 2 6 3 8 3 7 4 6 
(Dl ) - 36 W Χ Υ Ζ + 3 W X Y Z - 24 W Χ Υ Ζ 
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3 6 3 6 2 8 6 5 4 7 6 5 
+ 2 W Χ Υ Ζ + 9 6 W Χ Y Ζ - 1 6 8 W Χ Υ Ζ 

2 7 6 5 2 10 5 5 2 7 5 5 7 5 5 
+ 12 W Χ Υ Ζ - 216 W Χ Υ Ζ - 8 W Χ Υ Ζ + 9 Χ Υ Ζ 

4 6 5 5 2 6 5 5 2 9 4 5 7 3 5 
+ 14 W Χ Υ Ζ - W Χ Υ Ζ + 1 8 W Χ Υ Ζ + 8 7 Χ Υ Ζ 

2 6 3 5 7 5 3 7 3 3 3 6 3 3 
- 3 W Χ Υ Ζ + 6 W X Υ Ζ + 5 8 W X Υ Ζ - 2 W Χ Υ Ζ 

8 7 2 2 7 7 2 7 7 2 10 6 2 
- 2 4 X Y Z + 4 2 W X Y Z - 3 X Y Z + 5 4 X Υ Ζ 

8 5 2 2 7 5 2 7 5 2 4 6 5 2 
- 232 Χ Υ Ζ + 4 1 4 W X Y Z - 29 Χ Υ Ζ - 14 W Χ Υ Ζ 

2 6 5 2 10 4 2 2 9 4 2 
+ W X Y Z + 522 X Y Z - 1 8 W X Y Z 

We now c a l l the f u n c t i o n FACTOR on ( D l ) and 

(C2) FACTOR(Dl); 
Time= 111998 msec. 

6 3 2 3 2 2 2 2 3 
(D2) - Χ Υ Ζ (3 Ζ + 2 W Z - 8 X Y + 1 4 W Y - Y + 1 8 X Y) 

2 3 2 3 2 2 
(12 W X Y Z - W Ζ - 3 X Y - 29 X + W ) 

MACSYMA f a c t o r s t h i s massive expres s ion i n about two CPU 
minu tes . One can a l s o extend the f i e l d of f a c t o r i z a t i o n to the 
Gaussian i n t ege r s or o ther a l g e b r a i c f i e l d s ( 1 0 ) . 

S i m p l i f i c a t i o n . A very important f ea tu re of MACSYMA i s i t s a b i l i t y 
to s i m p l i f y exp re s s ions . When I s tud ied plane-wave m e t r i c s f o r a 
new g r a v i t a t i o n theory ( 1 1 , 12)» one p a r t i c u l a r c a l c u l a t i o n produced 
an expres s ion w i t h s e v e r a l hundred thousand terms. From geome t r i ca l 
arguments I knew the expres s ion must s i m p l i f y and indeed , u s ing 
MACSYMA, the express ion c o l l a p s e d to a sma l l number of pages of 
ou tpu t . The f o l l o w i n g exp re s s ion occur red repea ted ly i n the course 
of the c a l c u l a t i o n and caused the c o l l a p s e of the l a r g e r exp re s s ion 
du r ing s i m p l i f i c a t i o n . 
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2 2 2 2 
(SQRT(R + A ) + A) (SQRT(R + Β ) + B) 

( D l) 
2 
R 

2 2 2 2 
SQRT(R + Β ) + SQRT(R + A ) + Β + A 

2 2 2 2 
SQRT(R + Β ) + SQRT(R + A ) - Β - A 

(C2) RATSIMP(Dl); 
Tim€= 138 msec. 
(D2) 0 

When the canonical s i m p l i f i e r RATSIMP i s called on (Dl) above 
i t returns zero. At f i r s t I did not believe that (Dl) i s zero, and 
I spent 14 minutes verifying i t by hand (almost exceeding my 15 
minute l i m i t ) . It i s not easy to prove. Combining the expressions 
over a common denominator results i n a numerator that contains 20 
terms when f u l l y expanded, and one must be very careful to assure 
cancellation. Try i t by hand! 

Indefinite Integration. MACSYMA can handle integrals involving 
rational functions and combinations of rat i o n a l , algebraic 
functions, and the elementary transcendental functions. It also has 
knowledge about error functions and some of the higher 
transcendental functions. 

Below i s an integral that i s quite d i f f i c u l t to do by hand. It 
is not found i n standard tables i n i t s given form although i t may 
transform to a recognized case. It i s especially d i f f i c u l t to do by 
hand unless one notices a t r i c k that involves performing a p a r t i a l 
fraction decomposition of the integrand with respect to LOG(X). 
However, MACSYMA handles i t readily. 

/ 
[ LOG(X) - 1 

(Dl) I dX 
] 2 2 
/ LOG (X) - X 

(C2) INTEGRATE(Dl,X); 
Time= 744 msec. 

L0G(L0G(X) + X) L0G(L0G(X) - X) 
(D2) 

2 2 

Definite Integration. Definite integration i s far more d i f f i c u l t to 
code than indefinite integration because the number of known 
techniques i s much larger. One has the added complication of taking 
l i m i t s at the endpoints of the integral. MACSYMA has impressive 
capabilities for definite integration. Here i s an example of a 
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f u n c t i o n whose d e f i n i t e i n t e g r a l does not appear to be t a b u l a t e d : 

2 
2 - U X 

( D l ) X %E LOG(X) 

(C2) INTEGRATE(Dl,X,0,INF),FACTOR; 
Time 5 5 138442 msec. 

SQRT(%PI) (LOG(U) + 2 LOG(2) + %GAMMA - 2) 
( D 2 ) 

3/2 
8 U 

In (C2) above we have asked MACSYMA to i n t e g r a t e ( D l ) w i t h 
respec t to X from 0 to i n f i n i t y . In the answer, %GAMMA i s the 
MACSYMA syntax f o r the Eu le r -Masche ron i constant s 0 . 5 7 7 2 1 5 6 6 4 . · · 

In a d d i t i o n to d e f i n i t e i n t e g r a t i o n , MACSYMA can perform 
numeric i n t e g r a t i o n us ing the Romberg numeric i n t e g r a t i o n procedure . 
There are a number of o ther numeric techniques a v a i l a b l e . And, one 
has the a b i l i t y to eva lua te express ions n u m e r i c a l l y to a r b i t r a r y 
p r e c i s i o n . 

T a y l o r / L a u r e n t S e r i e s . The Tay lo r (Laurent ) s e r i e s c a p a b i l i t y i s 
very i m p r e s s i v e . Below we ask f o r the f i r s t 15 terms of the s e r i e s 
of ( D l ) about the p o i n t X « 0 . Not i ce tha t MACSYMA computes t h i s 
exp re s s ion i n l e s s than 1/2 CPU second. 

2 
3 Β L0G(X - X + 1) 

(D l ) A SIN(X ) + 
5 
X 

(C2) TAYLOR(D1,X,0 ,15) ; 
Time 5 3 365 msec. 

2 3 
Β Β 2 B Β Β Β Χ Β Χ (Β + 8 A) Χ 

(D2) /T/ + + + + 
4 3 2 4 X 5 3 7 8 

Χ 2 Χ 3 Χ 

4 5 6 7 8 9 
(2 Β) Χ Β Χ Β Χ Β Χ Β Χ (3 Β - 7 A) Χ 

9 10 11 6 13 42 

10 11 12 13 14 15 
(2 Β) Χ Β Χ Β Χ Β Χ Β Χ (6 Β + A) Χ 

15 16 17 9 19 120 
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The program can a l s o compute Tay lo r (Laurent) s e r i e s i n s e v e r a l 
v a r i a b l e s . 

Ord inary D i f f e r e n t i a l Equa t ions . Another powerful f ea tu re i s the 
MACSYMA program ODE. ODE i s a c o l l e c t i o n of a lgor i thms f o r s o l v i n g 
o r d i n a r y d i f f e r e n t i a l equa t ions . I t was b u i l t over s e v e r a l years by 
E . L . L a f f e r t y , J . P . Golden, R . A . Bogen and B . K u i p e r s , and i t s 
c a p a b i l i t i e s are desc r ibed i n the MACSYMA Reference Manual (6) i n 
V 2 - 4 - 1 4 . 

In ( C I ) , we f i r s t dec l a r e tha t Y i s a f u n c t i o n of X . Th i s 
assures that the d e r i v a t i v e (2nd) of Y w i t h respect to X w i l l not 
v a n i s h when (C2) i s eva lua t ed . 

(CI) DEPENDS(Y,X)$ 

(C2) (1+X"2)*DIFF(Y,X,2)-2*Y=0; 

2 
(D2) ( X + 1 ) Y - 2 Y = 0 

X X 

We now ask the system to so lve (D2) f o r Y as a f u n c t i o n of X 
us ing the ODE command. The genera l s o l u t i o n w i t h the two 
i n t e g r a t i o n cons tan t s , %K1 and %K2 i s g i v e n i n (D3) i n about two CPU 
seconds. The program can a l s o f i n d powerser ies s o l u t i o n s fo r some 
d i f f e r e n t i a l equat ions when i t can so lve the recur rence r e l a t i o n . 
I t does t h i s i n (D4) . MACSYMA can be used to check the answer (D3) . 
In (C5) we t e l l the system to s u b s t i t u t e (D3) i n t o (D2) , 
d i f f e r e n t i a t e the r e s u l t and s i m p l i f y . 

(C3) 0 D E ( D 2 , Y , X ) ; 
Time- 2068 msec. 

2 ATAN(X) X 2 
(D3) Y = %K2 (X + 1) ( + ) + %K1 (X + 1) 

2 2 
2 X + 2 

(C4) 0DE(D2,Y,X,SERIES) ; 
T i m e 2 8766 msec. 

INF 
==== 1 2 1 

2 \ ( - 1) X 
(D4) Y = %K1 (X + 1) - %K2 X > 

/ 1 1 
= ( I - - ) ( I + - ) 
0 2 2 

(C5) D2,D3,DIFF,RATSIMP; 
Time= 2051 msec. 
(D5) 0 = 0 
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110 ARTIFICIAL INTELLIGENCE APPLICATIONS IN CHEMISTRY 

MACSYMA i s a computer system which performs many highly 
sophisticated computations that w i l l amaze people who use 
mathematical too l s . For many types of calculat ions MACSYMA offers 
enormous advantages over numeric systems. In th is paper I have 
shown but a few of the capabi l i t i es of MACSYMA. I t i s d i f f i c u l t to 
present many capab i l i t i e s i n a few pages. References (j>, 13) provide 
many more examples as wel l as motivating the use of MACSYMA i n 
several f i e lds of research and development. 
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9 
A Rule-Based Declarative Language 
for Scientific Equation Solving 

Allan L. Smith 

Chemistry Department, Drexel University, Philadelphia, PA 19104 

Procedural languages for scientific computation are briefly reviewed 
and contrasted with declarative languages. The capabilities of 
TK!Solver are explained, and two examples of its use in chemical 
computations are given. 

Most of the applications of artificial intelligence in chemistry so far have not involved 
numerical computation as a primary goal. Yet there are aspects of the AI approach to 
problem-solving which have relevance to computation. In scientific computation, one 
could view the knowledge base as the set of equations, input variable values, and unit 
conversions relevant to the problem, and the inference engine the numerical method 
used to solve the equations. This paper describes such a software system, 
TK!Solver. 

Brief Review of Software for Scientific Computation 

Since the beginning of electronic computing, one of the major incentives for 
developing computer languages has been to improve the ease of solving mathematical 
problems arising in science and engineering. Many such problems can be reduced to 
the solution of a set of Ν algebraic equations - not necessarily linear - in Ν 
unknowns. The earliest ways of doing this involved direct hand coding in 
hexadecimal machine language or in assembly language mnemonics, specifying in 
excruciating detail the procedures needed to transform input data into results. My 
first experience with computers (I) was on a Bendix laboratory computer, generating 
three-component polymer-copolymer phase diagrams in assembly language. After a 
summer of this I became quickly convinced that there must be a better way. 

In the early 1960's the first compiled procedural programming language for 
scientific computation, FORTRAN, became widely used in the US, with a parallel 
development of the use of ALGOL in Europe. Later in the decade, the interpretive 
procedural language BASIC emerged, followed by the powerful algebraic notational 
language APL. The first structured, procedural language developed to teach the 
concepts of programming, Pascal, appeared in 1971, followed later in the decade by 
the C language. 

In all of these procedural languages (also called imperative languages (2), one of 
the basic elements of syntax is the assignment statement, in which an algebraic 

0097-6156/ 86/ 0306-0111 $06.00/ 0 
© 1986 American Chemical Society 
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112 ARTIFICIAL INTELLIGENCE APPLICATIONS IN CHEMISTRY 

expression is evaluated and stored in a named storage location called a variable. 
Although both BASIC and FORTRAN use the equality symbol " = " for the 
assignment statement, Pascal emphasizes the procedural nature of the assignment 
statement by using the symbol " := " , thus distinguishing it from an algebraic 
equation. Another characteristic of procedural languages is that they specify in detail 
the procedures and flow of control needed to solve a problem, using such structures 
as conditionals and loops. 

Parallel to, but largely independent of, this development of procedural 
computational languages was the evolution of non-procedural or declarative 
languages used for symbolic processing. Eisenbach and Sadler (2) have reviewed the 
evolution of declarative languages, which began with LISP in 1960 and includes such 
recent languages as Prolog. One of the characteristics of declarative languages is that 
problems are defined in terms of logical or mathematical relationships, rather than 
assignment statements and flow of control, and that the language itself then decides 
how best to solve the problem posed and in what order to use the information 
provided. Declarative languages have not so far been widely used in scientific 
computation because of their computational inefficiency. 

There have also been important developments in the past decade in scientific 
applications software as scientists and engineers have looked for other ways of 
solving problems than by writing a program in FORTRAN or another procedural 
language. Libraries of mathemetical procedures commonly used in science and 
engineering became available for those who wanted to write their own procedural 
software but needed robust numerical algorithms in an easily used form. One of the 
first full scientific software packages which freed the user from writing in a compiled 
or interpreted procedural language was RS/1, which evolved as a part of the Prophet 
Network established by NIH for its research grantees in the 1970's and now runs as 
a separate package on DEC sur̂ rminis and personal computers (2). Another was the 
electronic spreadsheet, first embodied in its simple tabular format in Visicalc but now 
enhanced with plotting and sorting capabilities in Lotus 1-2-3 and several other 
packages. A third example is statistical software such as SPSS (4) or Minitab (5). 
Symbolic processing languages such as LISP led to the development of symbolic 
mathematics packages such as MACSYMA; their use in chemistry has been reviewed 
by Johnson (©. A recent ACS Symposium on symbolic algebraic manipulation 
contains a full description of MACSYMA among other systems, and a variety of 
applications in chemistry (2). 

Scientific applications software packages are often characterized by close 
attention to the design of the user interface, sometimes at the expense of program size 
or execution time. By far the dominant computational idiom in these packages, 
however, is procedural. For example, RS/1 has an internal language called RPL, 
modelled after the procedural language PL/1, in which specialized procedures and 
functions not available in the package may be written by the user. In spreadsheets, the 
cell is the basic storage location for either data or formulae. Cells are provided with 
data by an assignment process, and formulae reference other cell locations as 
variables. 

TK!SQlygr 

TKîSolver (S) is a high-level computer language for solving sets of algebraic 
equations and tabulating or plotting their results. In TKîSolver, equations are viewed 
as relationships or rules, not as assignment statements, and in that sense it may be 
viewed as a declarative language. The basic computational approach taken by 
TKîSolver grew out of the research of textile engineer Milos Konopasek in the 
1970's. It was realized early on by Konopasek and Papaconstadopoulos (2) that a 
high level computational langauge need not be procedural but could be declarative; 
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9. SMITH A Rule-Based Declarative Language for Equation Solving 113 

this point has been recently amplified by Konopasek and Jayaraman (1Q), who also 
make the case for TKîSolver's being an expert system for equation solving. 

To produce TKîSolver, the problem-solving methodology implemented by 
Konopasek in his Question Answering System (2) was combined with the experience 
in designing full-screen user interfaces of Software Arts, Inc. (the originators of the 
electronic spreadsheet). The goal of the language was to obviate three of the 
time-consuming stages of procedural program development (11): (1) algebraic 
transformations necessary for formulating assignment statements; (2) sequencing 
assignment statements to secure desired flow of information through the program; 
and (3) setting up input and output statements. The capabilities of TKîSolver, which 
runs on a number of different personal computers, are as follows (10,11): 

(1) It parses entered algebraic equations and generates a list of variables. 
(2) It solves sets of equations using a consecutive substitution procedure (the 

direct solver). 
(3) It solves sets of simultaneous (non-linear) algebraic equations by a modified 

Newton-Raphson iterative procedure when consecutive substitution fails 
(the iterative solver). 

(4) It searches through tables of data and evaluates either unknown function 
values or arguments when required in solving. 

(5) It performs unit conversions with definable conversion factors. 
(6) It detects inconsistencies in problem formulation and domain errors. 
(7) It generates series of solutions for lists of input data and displays results in 

tabular or graphical form. 
To see how such a language can speed up the process of equation-solving, 

consider the steps needed to solve a set of algebraic equations when using a 
procedural language. First, you must identify the variable or variables for which you 
need to solve. Next, you must use algebraic substitution methods to express the 
variables to be solved for in terms of the known variables using assignment 
statements. Finally, you must write a program to input values for the known 
variables, evaluate the unknown variables, and output the results. There are several 
disadvantages to this method. If a different combination of variables serves as input 
for another similar problem based on the same set of equations, the algebra must be 
reworked to solve for those new variables. In many cases it may not be possible to 
obtain analytic expressions usable in assignment statements, so you must find some 
numerical approximation algorithm suitable for the problem at hand and either obtain 
or write the code based on that algorithm. 

A Chemical Example: The van der Waals Gas 

Take, for example (12), the problem of solving for the P-V-T properties of a real gas 
obeying the van der Waals equation of state, 

P = n R T / ( V - n b ) - n 2 a / V 2 (1) 

where a and b are coefficients characteristic of a given gas. Solving for P, given n, 
V, and Τ is a simple assignment statement, but solving for η given Ρ, V, and Τ 
requires considerable algebraic manipulation, followed either by applying the formula 
for the roots of a cubic equation or by using a numerical technique for determining 
roots (the latter usually requires more mathematical analysis - for example, finding 
first derivatives using the Newton-Raphson method). 

Figure 1 shows the Rule Sheet for a TKîSolver model REALGAS.TK (12). 
The first rule is the van der Waals equation of state. The second defines the gas 
constant, and the third rule defines the number density. The fourth defines the 
compressibility factor z, a dimensionless variable which measures the amount of 
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114 ARTIFICIAL INTELLIGENCE APPLICATIONS IN CHEMISTRY 

departure of a real gas from ideality. The next three rules give the critical pressure, 
molar volume, and temperature of a van der Waals in terms of the coefficients a and 
b. The Van der Waals equation can be recast in a form which uses only reduced, 
dimensionless variables; these are defined in the next three rules. The last two rules 
provides values for the van der Waals coefficients a and b when the name of the gas 
is given (user-defined functions with symbolic domain elements and numerical range 
elements can be used in any model which requires reference to built-in data tables). 

S Rule 

"Equation of State of a van der Waals Gas. Chap. 4. Model name: REALGAS.TK 
* R = 0.0820568 "Value of gas constant 
*nd = n/V "Number density 
*z = P* V/(n*R*T) "Compressibility factor 
*Pc = a/(27*bA2) "Critical Pressure 
* Vc = 3 * b "Critical Molar Volume 
*Tc = 8*a/(27*b*R) "Critical Temperature 
*Pred = P/Pc "Reduced pressure 
* Vred = V/Vc "Reduced volume 
*Tred = T/Tc "Reduced temperature 

* a = acoeff ( gasname ) "Function for Van der Waals a coefficient 
* b = bcoeff ( gasname ) "Function for Van der Waals b coefficient 

Figure 1. Rule Sheet for Model REALGAS.TK 

A typical use for this model would be to solve for the number of moles of a gas, 
given its identity, pressure, volume, and temperature. The iterative solver is used for 
this purpose. You must decide which variable to choose for iteration and what a 
reasonable initial guess is. Real gases approach ideal behavior at low pressure and 
moderate temperatures. Since the compressibility factor ζ is 1 for an ideal gas, and 
since knowing ζ along with Ρ, V, and Τ allows a calculation of n, we choose ζ as 
the iteration variable and 1.0 as the initial guess. 

The Variable Sheet with the solution to such a problem is shown in Figure 2. 
Unit conversions from psi to atmospheres, from cubic feet to liters, and from 
Fahrenheit to Kelvins have been built into the model via the Units Sheet. For input 
values of 100 cubic feet of acetylene at 300 psi and 66°F, there are 728.9 moles of 
acetylene and the value of ζ of 0.874 indicates that the deviation from ideality is 
12.6%. 

Another Example: Acid Rain 

Problems in chemical equilibrium with many reactions involving many species 
often generate mathematical models containing large sets of simultaneous, nonlinear 
equations which must be solved by numerical means. TKîSolver is a good tool for 
solving such problems. For example, consider the acid-base chemistry of a raindrop. 
Vong and Charlson (12) have developed an equilibrium model which predicts the pH 
of cloud water, assuming an atmosphere with realistic levels of three soluble, 
hydrolyzable gases: SO ,̂ C0 2 , and NH 3 . Also included is the effect of acidic dry 
aerosols, particles of sub-micron diameter containing high concentrations of sulfuric 
and nitric acid. 
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St Input Name Output Unit Comment 

300 Ρ psi pressure 
100 V ftA3 volume 

η 728.92419 mol number of moles 
R .0820568 l*atm/(mo gas constant 

66.000000 Τ oF temperature 
'acetylen gas nam 'text name of the gas 

ζ .87417992 decimal compressibility factor 
nd .97443505 mol/1 molar density 

a 4.39 atm*lA2/m van der Waals a coefficient 
b .05136 1/mol van der Waals b coefficient 
Pc 61.638310 atm critical pressure 
Vc .15408 1 critical molar volume 
Tc 308.63925 Κ critical temperature 
Pred .33118688 decimal reduced pressure 
Vred 4854.9325 decimal reduced volume 
Tred .94624676 decimal reduced temperature 

Figure 2. Variable Sheet for REALGAS.TK with Solution 

There are five laws of chemical equilibrium relevant to the Charlson-Vong model: 
(1) the ideal gas law, relating gas species density to its temperature and partial 
pressure; (2) Henry's law, relating the partial pressure to the concentration of 
dissolved gas; (3) the law of mass action, giving equilibrium constant expressions for 
the hydrolysis reactions of the dissolved gases; (4) conservation of mass for species 
containing sulfur(IV), sulfur (VI), carbon(IV), nitrogen(V), and nitrogen(-IH); and 
(5) conservation of charge. Applying these laws, Vong and Charlson were able to 
calculate the pH of a raindrop by solving a set of 17 equations in 29 variables (cloud 
water content, temperature, partial pressures, and species concentrations) and 9 
parameters (Henry's law constants, equilibrium constants, and the gas constant). 
They wrote a FORTRAN program which solved all equations but one, that of charge 
conservation. The pH at electrical neutrality was determined by a graphical method, in 
which the total positive and negative charge concentrations were calculated and 
plotted for a series of assumed pH's and the crossing point found. 

A TKîSolver model called RAINDROP.TK has beendeveloped to incorporate 
the full Charlson-Vong model of cloud water equilibrium (12), including the 
temperature dependence of all equilibrium constants. The iterative solver makes it 
possible to compute the pH at charge neutrality without having to make plots of 
intermediate results. The Rule Sheet is shown in Figure 3. 

The Unit Sheet contains a number of conversions necessary to accommodate the 
variety of units used in experimental atmospheric chemistry. The Variable Sheet is 
arranged so that the variables at the top are the ones normally chosen as input 
variables. Since the usual goal of running the model is to determine the pH of the 
raindrop, the variable pH is chosen as the one on which to iterate. 

The following problem, taken to match the conditions in Figure 2 of reference 
13, is typical of those solved in less than one minute on an IBM PC with this model: 
"a cloud at 278 Κ contains 0.5 grams of liquid water per cubic meter of air. The 
atmosphere of the cloud contains 5 ppb sulfur dioxide, 340 ppm carbon dioxide, 0.29 
μg/m 3 rof nitrogen base, 3 μg/m 3 of sulfate aerosol, and no nitrate aerosol. What is 
the pH of the cloud water?' Figure 4 shows the Variable Sheet after solution. 
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Rule 

Equilibrium pH of a Raindrop, Charlson-Vong model. Chap. 8. Model name: RAINDROP.TK 
PS02 = NS02 * R * Τ "Ideal gas law for S02 
PNH3 = NNH3 * R * Τ "Ideal gas law for NH3 
PC02 = NC02 * R * Τ "Ideal gas law for C02 

PS02 = CS02 * KHS "Henry's law for S02 
PNH3 = CNH3 * KHN "Henry's law for NH3 
PC02 - CC02 * KHC "Henry's law for C02 

K1S = CHS03m * CHp / CS02 "Mass action law for S02 - HS03m 
K2S = CS032m * CHp / CHS03m "Mass action law for HS03m - S032m 
KB = CNH4p * COHm / CNH3 "Mass action law for NH3 - NH4p 
K1C = CHC03m * CHp / CC02 "Mass action law for C02 - HC03m 
K2C = CC032m * CHp / CHC03m "Mass action law for HC03m - C032m 
KW = CHp * COHm "Mass action law for water 

NTS4 = NS02 + L * (CS02 + CHS03m + CS032m ) "Mass balance for sulfur(IV) 
NTN3m = NNH3 + L * ( CNH3 + CNH4p ) "Mass balance for nitrogen(-ffl) 
NTC4 = NC02 + L * (CC02 + CHC03m + CC032m ) "Mass balance for carbon(IV) 
NTN5 = L * CN03m "Mass balance for nitrogen(V) 
NTS6 = L * CS042m "Mass balance for sulfur(VI) 

C^4p+CHp=ŒS03m+2*CS032m+COHm+CHC03m+2*CC032m+CN03m+2*CS042m 

"Chargebalance 

pH = -log(CHp) "Definition of pH 

"Tenperature-dependent equilibrium constants 
KHS = 0.379 * exp ( -3145.99 * (278 - Τ ) / ( 278 * Τ ) ) 
KHC= 16.6* exp (-2367.65* ( 2 7 8 - Τ ) / ( 2 7 8 * Τ ) ) 
KHN = 7.11E-3 * exp( -3730.87 * (278 - T ) / (278 * T) ) 
K1S = 2.06E-2 * exp(2003.54 * (278 - T ) / (278 * T) ) 
K2S = 8.88E-8 * exp (1461.46* ( 2 7 8 - Τ ) / ( 2 7 8 *T)) 
KlC = 2.94E-7*exp(-1716.92*(278-T)/(278*T)) 
K2C = 2.74E-11 * exp (-2217.49 * ( 278 - Τ ) / ( 278 * Τ ) ) 
KB = 1.5E-5 * exp ( -685.59 * ( 278 - Τ ) / ( 278 * Τ ) ) 
KW = 1.82E-15 * exp ( -7057.27 * ( 278 - Τ ) / ( 278 * Τ ) ) 
R = 0.0820565 "Ideal gas constant 

Figure 3: Rule Sheet for Model RAINDROP.TK 

Summary of Other Chemical Applications 

In addition to the two examples above, I have developed TKîSolver models for the 
ideal gas, for two-component mixture concentrations, for acid base chemistry 
(including the generation of titration curves), for transition metal complex equilibria, 
for general gaseous and solution equilibria, and for linear regression (12). 

Drexel undergraduate students in both the lecture and the laboratory of physical 
chemistry have been using TKîSolver for such calculations as least squares fitting of 
experimental data, van der Waals gas calculations, and quantum mechanical 
computations (plotting particle-in-a-box wavefunctions, atomic orbital electron 
densities, etc.). I use TKîSolver in lectures (on a Macintosh with video output to a 
25" monitor) to solve simple equations and plot functions of chemical interest. 
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9. SMITH A Rule-Based Declarative Language for Equation Solving 117 

TKîSolver has also had heavy use in the material balance course in chemical 
engineering, and in a mathematical methods course in materials engineering. Graduate 
students in chemistry are using it in research projects in spectroscopy and kinetics. 

In the teaching of quantum mechanics, TKîSolver has proved especially useful. 
For example, Berry, Rice, and Ross Q4) give several problems on the regions of 

Input Name Output Unit Comment 

278 Τ Κ temperature 
.5 L g/mA3 liquid water content of the cloud 

5 PS02 ppb partial pressure of S02 
340 PC02 ppm partial pressure of C02 
.29 NTN3m ug(N)/mA3 total nitrogen base concentration 
3 NTS6 ug(S04)/m sulfate aerosol concentration 
0 NTN5 ug(N03)/m nitrate aerosol concentration 

pH 4.0190385 decimal pH of water in the cloud 

PNH3 2.9020E-4 ppb partial pressure of NH3 

CN03m 0 mol/lw concentration of N03 anion 
CS042m .0000625 mol/lw concentration of S04 anion 

NS02 2.192E-10 mol/la concentration of gaseous S02 
CS02 1.3193E-8 mol/lw concentration of dissolved S02 
CHS03m 2.8395E-6 mol/lw concentration of HS03 anion 
CS032m 2.6344E-9 mol/lw concentration of S03 anion 

NC02 1.4905E-5 mol/la concentration of gaseous C02 
CC02 2.0482E-5 mol/lw concentration of dissolved C02 
CHC03m 6.2915E-8 mol/lw concentration of HC03 anion 
CC032m 1.801E-14 mol/lw concentration of C03 anion 

NNH3 1.272E-14 mol/la concentration of gaseous NH3 
CNH3 4.082E-11 mol/lw concentration of dissolved NH3 
CNH4p 3.2197E-5 mol/lw concentration of NH4 cation 

CHp 9.5711E-5 mol/lw concentration of hydrogen ion 
COHm 1.902E-11 mol/lw concentration of hydroxide ion 

NTS4 2.206E-10 mol/la total concentration of sulfur (IV) 
NTC4 1.4905E-5 mol/la total concentration of carbon (TV) 

KHS .379 atm*la/mo Henry's law constant for S02 
KHC 16.6 atm*la/mo Henry's law constant for C02 
KHN .00711 atm*la/mo Henry's law constant for NH3 

K1S .0206 decimal equilibrium constant for S02 - HS03 
K2S 8.88E-8 decimal equilibrium constant for HS03 - S03 
K1C 2.94E-7 decimal equilibrium constant for C02 - HC03 
K2C 2.74E-11 decimal equilibrium constant for HC03 - C03 
KB .000015 decimal equilibrium constant for NH3 - NH4 
KW 1.82E-15 decimal ionization constant for water 
R .0820565 la*atm/(m ideal gas constant 

Figure 4 : Variable Sheet for Solution to Sample Problem 
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bonding and anti-bonding in diatomics, one of which requires the calculation and 
plotting of contours of constant bonding force. They suggest calculation of the 
bonding force on a large grid of points and then connecting points of constant force, 
but with TKîSolver it is possible to solve directly the set of parametric equations in r 
and theta and to plot the resulting contours. 

In summary, the rule-based, declarative approach to solving sets of algebraic 
equations presented by TKîSolver has proved to be a fruitful medium for chemical 
computations. 
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10 
A Chemical-Reaction Interpreter for Simulation 
of Complex Kinetics 

David Edelson1 

AT&T Bell Laboratories, Murray Hill, NJ 07974 

Simulation of the kinetics of complex chemical 
systems is finding ever increasing use for analysis 
of reaction mechanism as well as for process 
prediction and control. Software for the solution of 
the large number of coupled mass-action differential 
equations is now readily available, as are reaction 
rate data banks for many systems of interest. 
However, application of the technique is discouraged 
by the tedious, error-prone task of manually 
formulating the differential equation set and coding 
i t for the computer. Several chemical reaction 
interpreters which can do this have been written over 
the years; this report describes our most recent 
version which uses modern operating systems and 
programming techniques to implement an interactive, 
user-friendly program. Portability was a prime 
consideration in its design so that i t could be 
interfaced with any differential equation solving 
program. Although i t was written in C for use on 
machines having a UNIX operating system, the 
subroutines that i t produces for the equation solver 
are in FORTRAN, so that they can be ported to other 
machines, and are compatible with most simulation 
packages in use today. Special features include free 
form input, batch or interactive operation, ful l 
ASCII capability, and dynamic storage allocation. 
The extensive use of the "structure" data type in the 
C source code makes i t easy to modify or enhance the 
interpreter to suit the needs of the current 
application or computing environment. 

Computer s i m u l a t i o n of chemical r e a c t i o n or r e a c t i o n - t r a n s p o r t 
systems has long been used i n chemical e n g i n e e r i n g process 
design, and has more r e c e n t l y moved i n t o the chemical r e s e a r c h 

1 Current address: Department of Chemistry, Florida State University, Tallahassee, 
FL 32306 

0097-6156/86/0306-0119$06.00/0 
© 1986 American Chemical Society 
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120 ARTIFICIAL INTELLIGENCE APPLICATIONS IN CHEMISTRY 

area, where i t has become a t o o l f o r the e l u c i d a t i o n of chemical 
mechanism(/). The technique has a l s o found a p p l i c a t i o n i n the 
p r e d i c t i o n of the behavior of l a r g e complex chemical systems, 
such as atmospheric and environmental systems(2,5), e s p e c i a l l y i n 
the study of the e f f e c t of p o l l u t a n t s and s t r a t e g i e s f o r the 
m i n i m i z a t i o n of t h e i r e f f e c t s ( 4 ) . 

The mathematical problem posed i s the s o l u t i o n of the 
simultaneous d i f f e r e n t i a l equations which a r i s e from the mass-
a c t i o n treatment of the chemistry. For the homogeneous, w e l l -
mixed r e a c t o r , t h i s becomes a set of o r d i n a r y , n o n - l i n e a r , 
f i r s t - o r d e r d i f f e r e n t i a l equations. For systems t h a t are not 
s p a t i a l l y uniform and i n v o l v e m a t e r i a l and energy t r a n s p o r t , the 
chemical terms are coupled with the f l u i d mechanics and heat 
t r a n s f e r t o g i v e s e t s of p a r t i a l d i f f e r e n t i a l equations. 
Numerical techniques f o r s o l v i n g these systems have been 
e x t e n s i v e l y developed(5,6), but r e g a r d l e s s of the s t r a t e g y used 
to s o l v e the s e t of o r d i n a r y d i f f e r e n t i a l equations, or the 
s p a t i a l d i s c r e t i z a t i o n methods employed f o r p a r t i a l d i f f e r e n t i a l 
equations(7,£), the f i n a l task i s t h a t of s o l v i n g very l a r g e 
matrix systems of a l g e b r a i c equations. T h i s has t r a d i t i o n a l l y 
been the f o r t e of the l a r g e main-frame computer, but the r a p i d l y 
expanding c a p a b i l i t y of minis and micros has enabled them to 
handle the s o l u t i o n of modest problems. At the other end of 
s c a l e , the expanding scope of a p p l i c a t i o n of these s i m u l a t i o n 
methods, e s p e c i a l l y to two- and t h r e e - dimensional systems, has 
v a s t l y i n c r e a s e d the number of equations to be s o l v e d , and so has 
entered the realm of the supercomputer. 

From the chemist's p o i n t of view as a user, these s i m u l a t i o n 
techniques r e q u i r e him to provide computer code f o r the time 
d e r i v a t i v e of each chemical s p e c i e s i n the mechanism. According 
to the p r i n c i p l e of mass-action, the d e r i v a t i v e of the x-th 
s p e c i e s c o n c e n t r a t i o n i n a mechanism of M r e a c t i o n s i n v o l v i n g Ρ 
chemical s p e c i e s i s g i v e n by 

d[Nx] μ ρ 
a t i-1 7-1 

where fc, i s the r a t e constant of the i - t h r e a c t i o n , and v« i s the 
s t o i c h i o m e t r i c c o e f f i c i e n t of the ; - t h s p e c i e s i n the i - t h 
r e a c t i o n . Since the d i f f e r e n t i a l equations are u s u a l l y handled 
by methods a p p r o p r i a t e to s t i f f equations, the p a r t i a l 
d e r i v a t i v e s of each of the above expressions with r e s p e c t to a l l 
the Ρ s p e c i e s (Jacobian matrix) are needed as w e l l . While each 
term i n the summation above r a r e l y has more than three s p e c i e s i n 
the product (i.e. most of the i/~'s are z e r o ) , the algebra i n v o l v e d 
i n c o l l e c t i n g a l l the sums ana products i s so l a r g e and the l a b o r 
(and the p o s s i b i l i t y of e r r o r ) i n the coding so g r e a t , t h a t t h i s 
t ask i s u n l i k e l y t o be undertaken manually f o r any but small 
chemical mechanisms. However, a mechanism f o r atmospheric or 
combustion chemistry may e a s i l y run to s e v e r a l hundred r e a c t i o n s 
and s p e c i e s . Furthermore, i n r e s e a r c h a p p l i c a t i o n s i t i s common 
to t e s t s e v e r a l a l t e r n a t e models f o r the system under study, and 
the amount of code to be w r i t t e n e s c a l a t e s g r e a t l y . C l e a r l y a 
machine a i d i s r e q u i r e d to make the technique simple to use so 
t h a t i t s e x p l o i t a t i o n i s encouraged. 

Over the y e a r s , v a r i o u s approaches to t h i s problem have been 
taken. In one of the e a r l i e s t , each chemical s p e c i e s was 
assigned an i d e n t i f i c a t i o n number, chemical equations r e w r i t t e n 
i n these terms, and the computer c o n s t r u c t e d a symbolic r e a c t i o n 
t a b l e which would subsequently be used i n a lookup procedure to 
guide the computation. In those years, the computation was slow 
and cumbersome, and the a d d i t i o n a l overhead of the t a b l e lookup 
at each step of the i t e r a t i v e s o l u t i o n process g r e a t l y i n c r e a s e d 
the c o s t s of the s i m u l a t i o n . The next step was to use t h i s t a b l e 
lookup j u s t once to w r i t e a r o u t i n e which would be compiled as 
p a r t of the s i m u l a t i o n program. F o r t r a n was the major h i g h - l e v e l 
language a v a i l a b l e ; i t was necessary to use assembly language to 
w r i t e the F o r t r a n code f o r the s i m u l a t i o n package(P). 

 P
ub

lic
at

io
n 

D
at

e:
 A

pr
il 

30
, 1

98
6 

| d
oi

: 1
0.

10
21

/b
k-

19
86

-0
30

6.
ch

01
0

In Artificial Intelligence Applications in Chemistry; Pierce, T., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1986. 



10. EDELSON Simulation of Complex Kinetics 121 

The next advance was scanning and i n t e r p r e t a t i o n of the t e x t of 
the o r i g i n a l r e a c t i o n s e t , w r i t t e n i n as c l o s e an approximation 
to r e a l chemical n o t a t i o n as the s t r a i g h t - l i n e , upper-case only 
format of the 72-column card would permit(10). Since c h a r a c t e r 
and s t r i n g m a n i p u l a t i o n through F o r t r a n was at t h a t time 
cumbersome and i n e f f i c i e n t , these p a r t s of the i n t e r p r e t a t i o n 
program were w r i t t e n i n assembly language. The i n t e r p r e t e r used 
F o r t r a n output statements to generate the s i m u l a t i o n code i n 
assembly language, making the s i m u l a t i o n more e f f i c i e n t , but 
u n f o r t u n a t e l y non-portable. 

The passage of time has brought v a s t l y improved f a c i l i t i e s f o r 
s t r i n g and c h a r a c t e r h a n d l i n g by h i g h - l e v e l languages. Smaller 
machines have come i n t o vogue, and i n t e r a c t i v e o p e r a t i o n has 
taken pr e f e r e n c e over batch systems. The growth i n problem s i z e , 
however, has kept the mainframe machines i n the p i c t u r e , and has 
even brought i n the supercomputers, which are, at t h i s w r i t i n g , 
geared to batch mode o p e r a t i o n and mostly F o r t r a n programming. 
Front-end machines, however, o f f e r a v a r i e t y of i n t e r a c t i v e 
environments and programming languages. T h i s suggests t h a t a 
b e t t e r approach would be to separate the problem i n t e r p r e t a t i o n 
and s o l v i n g f u n c t i o n s of a s i m u l a t i o n system. Thi s paper 
d e s c r i b e s a new implementation of our previous s i m u l a t i o n 
package, i n which each p a r t i s done on a machine and with a 
language which are the most e f f e c t i v e and a p p r o p r i a t e . 

The B e l l L a b o r a t o r i e s C e n t r a l Computer S e r v i c e supports a 
Cray - 1 with F o r t r a n as the primary h i g h - l e v e l language f o r 
compute-bound problems. T h i s i s accessed through a number of 
f r o n t - e n d machines, mostly Vaxes o p e r a t i n g under UNIX, which 
support s e v e r a l h i g h - l e v e l languages f o r i n t e r a c t i v e use. 
Because of the number of d i f f e r e n t tasks the chemical i n t e r p r e t e r 
i s r e q u i r e d to perform i n a d d i t i o n to elementary s t r i n g 
m a n i p u l a t i o n , we chose C as the language i n which to w r i t e i t . 
T h i s o f f e r s a degree of p o r t a b i l i t y , as C or C - l i k e compilers are 
to be found on a l a r g e number of machines and o p e r a t i n g systems. 
Input Language 
Chemical n o t a t i o n i s mostly the r e s u l t of h i s t o r i c precedent, and 
was c e r t a i n l y never intended to be i n t e r p r e t e d by a computer. 
However, i n order to maintain the g r e a t e s t ease of o p e r a t i o n by a 
chemist, the input language should be designed to be as c l o s e to 
the normal n o t a t i o n f o r r e a c t i o n equations. The b a s i c input 
r e c o r d i s a chemical equation; r e a c t a n t s on the l e f t are 
separated from products on the r i g h t by an arrow ( — r e a d 
' y i e l d s ' ) , and are i n t u r n separated from each other by plus (+) 
s i g n s . S u b s t i t u t i n g the equal s i g n (-) f o r the arrow and the 
ampersand (€) f o r the plus r e s u l t s i n a minimal s a c r i f i c e of 
r e a d a b i l i t y f o r the chemist, but e l i m i n a t e s ambiguities f o r the 
machine. S u b s i d i a r y f i e l d s f o r i d e n t i f i c a t i o n numbers are 
separated from the r e a c t i o n e x p r e s s i o n by tab c h a r a c t e r s . Input 
i s i n f r e e form, with embedded spaces ignored (except i n t e x t 
e x p r e s s i o n s , see below). 

Compounds are expressed by t h e i r symbolic formulas. The use of 
the f u l l ASCII c h a r a c t e r s e t allows the elements to be expressed 
by t h e i r usual one or two c h a r a c t e r names, with the upper or 
lower case context p r o v i d i n g the c h a r a c t e r count. More e l a b o r a t e 
d e s i g n a t i o n s f o r atoms ( i n c l u d i n g s u p e r s c r i p t s denoting i s o t o p e 
number, f o r example) are accommodated by e n c l o s i n g the e x p r e s s i o n 
i n a p p r o p r i a t e quotes. U p s h i f t and downshift metacharacters can 
be used here to denote a p p r o p r i a t e c h a r a c t e r placement on output 
d e v i c e s (such as p l o t t e r s and t y p e s e t t e r s ) which allow f o r 
p a r t i a l l i n e spacings; l i n e p r i n t e r s would ignore them. 

U n f o r t u n a t e l y , t e r m i n a l input does not allow f o r the s u b s c r i p t s 
and s u p e r s c r i p t s used by chemists. A r i g i d format i s t h e r e f o r e 
enforced to d i s t i n g u i s h s u b s c r i p t s ( i n d i c a t i n g number of atoms) 
from s u p e r s c r i p t s ( i n d i c a t i n g valence s t a t e or charge) by 
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preceding the l a t t e r by a + or - s i g n . Charge i n d i c a t i o n can be 
by a p p r o p r i a t e r e p e t i t i o n of the s i g n , or by a s i n g l e s i g n 
f o l l o w e d by numerical i n d i c a t i o n . P a r enthesized expressions are 
accommodated and expanded i n the usual way, and n e s t i n g to 
s e v e r a l l e v e l s i s allowed. 

Where i t i s f e l t t h a t c l a r i t y ( f o r the chemist) i s b e t t e r 
served by u s i n g compound names r a t h e r than formulas, t e x t input 
i s accepted by surrounding i t with q u o t a t i o n marks. T h i s t e x t i s 
not s u b j e c t to l e x i c a l a n a l y s i s ; s u b s i d i a r y tasks such as syntax 
checking cannot be performed i n t h i s case. Quoted t e x t can a l s o 
be attached to a compound expressed by formula; the formula i s 
i n t e r p r e t e d and the t e x t passed through unchanged. 
Syntax A n a l y s i s 
As each r e a c t i o n equation i s entered, s e v e r a l checks are 
performed to c a t c h e r r o r s i n f o r m u l a t i o n or t y p i n g : the c o r r e c t 
number of tabs, equals, balanced quotes or parentheses, and 
conformance to the syntax r u l e s which allows the equation to be 
separated i n t o r e a c t a n t s and products, and these i n t u r n to be 
decomposed i n t o atoms. Each time a new chemical s p e c i e s i s 
encountered i t i s r e p o r t e d to the user, who can determine whether 
a v a l i d name has been entered. The equation i s checked f o r 
balances i n atomic elements and charges, and d i s c r e p a n c i e s l i s t e d 
f o r c o r r e c t i v e a c t i o n . Species names may be e i t h e r formulas or 
t e x t ; i n the l a t t e r case the balance checking f e a t u r e must be 
turned o f f to a v o i d f a l s e e r r o r s . 

When the input l i s t i s f i n i s h e d , the i n t e r p r e t e r checks the 
equations a g a i n s t each other, to a s c e r t a i n t h a t a r e a c t i o n has 
not i n a d v e r t e n t l y been entered more than once, even with 
permutations of the r e a c t a n t s or products. F i n a l l y , i f a l l input 
has been e r r o r - f r e e , the i n t e r p r e t e r continues by l e x i c a l l y 
s o r t i n g the atomic elements and s p e c i e s names, a s s i g n i n g f i n a l 
i d e n t i f i c a t i o n numbers, and p r o v i d i n g a l i s t f o r the user. 

Should an e r r o r be encountered d u r i n g input, the i n t e r p r e t e r 
w i l l not complete i t s t a s k . However, i t does copy a l l input to a 
f i l e from which i t may be r e t r i e v e d , e d i t e d and resubmitted i n 
batch mode, making i t unnecessary to retype a l l the equations. 
Data S t r u c t u r e s 
Scanning of the r e a c t i o n input leads to the g e n e r a t i o n of three 
types of data s t r u c t u r e ( i n the C sense(//)), one d e a l i n g with 
r e a c t i o n s , one with chemical s p e c i e s , and the l a s t with chemical 
elements. Each r e a c t i o n s t r u c t u r e c o n t a i n s the a p p r o p r i a t e 
i d e n t i f i c a t i o n numbers, and a symbolic r e p r e s e n t a t i o n of the 
r e a c t i o n i t s e l f i n terms of p o i n t e r s to the chemical s p e c i e s 
s t r u c t u r e s of the r e a c t a n t s and products. The chemical s p e c i e s 
s t r u c t u r e s i n t u r n c o n t a i n p o i n t e r s to chemical element 
s t r u c t u r e s , as w e l l as t e x t s t r i n g s to be used i n p r i n t e d , 
p l o t t e d , or t y p e s e t output. The chemical element s t r u c t u r e s 
s i m i l a r l y c o n t a i n i d e n t i f y i n g numerical and t e x t i n f o r m a t i o n . 
Storage f o r these s t r u c t u r e s i s a l l o c a t e d as needed, and they are 
chained to each other by p o i n t e r s . As each p a r t i c i p a n t i n a 
r e a c t i o n i s examined, the database i s searched and a s t r u c t u r e 
c r e a t e d f o r any newly encountered s p e c i e s . Since the number and 
s i z e of these searches may become q u i t e l a r g e f o r e x t e n s i v e 
r e a c t i o n mechanisms, the s p e c i e s s t r u c t u r e s are ordered l e x i c a l l y 
i n a b i n a r y t r e e to keep the search time to a minimum. A f t e r 
input i s complete, f i n a l i d e n t i f i c a t i o n numbers are assigned to 
the elements and s p e c i e s a c c o r d i n g to a l e x i c a l s o r t . 
Program Output 
The p r i n c i p a l task of the i n t e r p r e t e r i s to provide two 
subroutines f o r use by the s i m u l a t i o n program, which i s a s o l v e r 
f o r o r d i n a r y or p a r t i a l d i f f e r e n t i a l equations. Since chemical 
systems are f o r the most p a r t " s t i f f " as a r e s u l t of negative 
feedback(72) the i n t e r p r e t e r expects the s i m u l a t i o n package to 
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use an i m p l i c i t d i f f e r e n t i a l equation s o l v e r r e q u i r i n g 
c a l c u l a t i o n of both the f u n c t i o n (i.e. the mass-action e x p r e s s i o n 
of the net r a t e of change of the s p e c i e s ) and i t s p a r t i a l 
d e r i v a t i v e s with r e s p e c t to a l l s p e c i e s (Jacobian m a t r i x ) . The 
former i s computed stepwise: f i r s t the r a t e of each r e a c t i o n i s 
c a l c u l a t e d ; then these terms are combined to g i v e i n d i v i d u a l 
formation and removal terms f o r each s p e c i e s , and f i n a l l y these 
are a l g e b r a i c a l l y added to g i v e the d e r i v a t i v e s . T h i s s t r a t e g y 
makes a v a i l a b l e to the user a d d i t i o n a l i n f o r m a t i o n t h a t i s o f t e n 
h e l p f u l i n i n t e r p r e t i n g the mechanism. The Jacobian terms are 
c a l c u l a t e d i n one step. F o r t r a n code f o r these subroutines i s 
w r i t t e n u s i n g d i r e c t addresses f o r each member of the a p p r o p r i a t e 
a r r a y s , i t being assumed t h a t these are s t o r e d i n the same order 
as t h a t provided by the l e x i c a l s o r t above. The F o r t r a n compiler 
i s thus burdened with the task of c a l c u l a t i n g the v a r i a b l e 
addresses, r e l i e v i n g the s i m u l a t i o n program of t h i s task and so 
improving the run-time economy. 

I t i s a l s o p o s s i b l e to use the i n f o r m a t i o n which has been 
s t o r e d to w r i t e programs f o r other t a s k s . A u s e f u l one, f o r 
example, keeps t r a c k of the s t o i c h i o m e t r y (i.e. t o t a l atom counts) 
of the system. For a c l o s e d system, s t o i c h i o m e t r y should be 
a u t o m a t i c a l l y maintained by l i n e a r p r e d i c t o r - c o r r e c t o r s o l v e r s , 
and the s t o i c h i o m e t r y program provides a d i a g n o s t i c of numerical 
e r r o r s (and others) which have accumulated. In other than c l o s e d 
systems, i t g i v e s an independent check on the sources and s i n k s 
which are being modeled. 

Various databases can a l s o be output by the i n t e r p r e t e r , e.g. 
l i s t s of element and s p e c i e s names, t e x t f i l e s f o r l a b e l i n g 
p r i n t e d and p l o t t e d output, and a symbolic r e a c t i o n matrix. T h i s 
i n f o r m a t i o n i s d i s t r i b u t e d to i n d i v i d u a l ASCII f i l e s , from which 
they may be read by subsequent p a r t s of the s i m u l a t i o n package 
f o r use i n the a p p r o p r i a t e t a s k . 
A d a p t a b i l i t y 
The i n t e r p r e t e r was designed to be independent of the s i m u l a t i o n 
program f o r which i t e v e n t u a l l y w i l l serve. A s t r u c t u r e d 
programming language such as C i s t h e r e f o r e i d e a l f o r coding i t 
s i n c e i t i s simple to add code to perform a d d i t i o n a l tasks (as 
f o r example w r i t i n g the v a r i a b l e dimension s p e c i f i c a t i o n s ) which 
might be s p e c i f i c to the a p p l i c a t i o n . The use of s t r u c t u r e data 
types a l s o allows the expansion of the type of supplementary 
i n f o r m a t i o n c a r r i e d along with each v a r i a b l e with l i t t l e 
a d d i t i o n a l coding e f f o r t and with no danger of breaking the 
a l r e a d y e x i s t i n g code. Communication of i n f o r m a t i o n from the 
i n t e r p r e t e r to the s i m u l a t i o n program i s through i n d i v i d u a l f i l e s 
of i n f o r m a t i o n , which can be input to subsequent programs and 
s t o r e d to be used as needed. The s i m u l a t i o n system i s thus f r e e d 
from dependencies on the o p e r a t i n g system environment. 
C o n c l u s i o n 
The i n t e r a c t i v e i n t e r p r e t a t i o n of chemical equations i n 
c o n j u n c t i o n with the s i m u l a t i o n of chemical r e a c t i o n systems has 
been implemented by a C-language program which can be run on a 
small machine t h a t i s independent of the machine on which the 
s i m u l a t i o n program r e s i d e s . The f l e x i b l e s t r i n g and c h a r a c t e r 
m a n i p u l a t i o n c a p a b i l i t i e s of t h i s environment enables the chemist 
to use an input language s i m i l a r to the n a t u r a l language of 
chemical k i n e t i c s , and checks syntax and c o n s i s t e n c y of the input 
as w e l l . The i n t e r p r e t e r provides v e r i f i e d code f o r any 
s i m u l a t i o n program u s i n g standard d i f f e r e n t i a l equation s o l v e r s , 
and a l s o f a c i l i t a t e s the d i s p l a y of the r e s u l t s i n chemical 
n o t a t i o n . These i n t e r p r e t e r s have been used s u c c e s s f u l l y f o r 
many years and have f o s t e r e d the growth of s i m u l a t i o n techniques 
i n many areas of chemistry and chemical e n g i n e e r i n g . 
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11 
Applying the Techniques of Artificial Intelligence 
to Chemistry Education 

Richard Cornelius1, Daniel Cabrol2, and Claude Cachet2 

1Department of Chemistry, Lebanon Valley College, Annville, PA 17003 
2Department of Chemistry, Université de Nice, 06034 Nice, France 

The computer program called GEORGE is a "problem
-solving partner" for introductory chemistry students. 
The program has no problems to present to students; 
students give problems to GEORGE and he solves the 
problems. He explains the solution using ordinary 
English and then sketches a diagram to show how data 
are combined and relations are applied to give the 
solution. GEORGE operates on problems involving three 
fundamental quantities, mass, volume, and number of 
moles, and other quantities that can be expressed as 
ratios of these fundamental quantities. 

The power o f the computer ho lds the promise f o r f a r - r e a c h i n g changes 
i n educa t i on , but tha t promise remains u n r e a l i z e d . Most o f the 
a p p l i c a t i o n s o f computers i n chemica l educa t ion have been adapta t ions 
of t each ing s t r a t e g i e s used i n other media; there are many t a sks tha t 
have been done be t t e r or f a s t e r on the computer but l i t t l e r e a l l y new 
has been developed. There i s a quote tha t summarizes the s i t u a t i o n 
i n which we f i n d ou r se lves today: " A f t e r years o f growing w i l d l y the 
f i e l d of [ educa t i ona l ] computing i s f i n a l l y approaching i t s i n f a n c y . " 
T h i s quote i s n e a r l y twenty years o l d , having been taken from the 
repor t of the 1967 P r e s i d e n t ' s Sc ience Adv i so ry Commission (1). 
The quote, however, i s as t rue today as i t was n e a r l y twenty years 
ago. We stand on the t h r e s h o l d o f e x c i t i n g new a p p l i c a t i o n s f o r 
computers both w i t h i n the f i e l d of educa t ion and e lsewhere . The 
subjec t of t h i s paper i s a computer program which represents one 
t o t a l l y d i f f e r e n t approach f o r the use o f computers i n chemica l 
educa t i on . We hope tha t i t i s on ly one new approach out o f many tha t 
we w i l l see i n the f u t u r e . 

One of the most important advantages of computers i n educa t ion 
i s the c a p a c i t y of software to adjus t the pace or nature o f 
a c t i v i t i e s on the b a s i s o f i npu t from the s tuden t . T u t o r i a l or d r i l l 
and p r a c t i c e programs a v a i l a b l e today do i n f a c t make some 
adjustments based upon student responses . These programs are 

0097-6156/86/0306-0125$06.00/0 
© 1986 American Chemical Society 
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l i m i t e d , however, by the i n g e n u i t y o f the person tha t wrote the 
software i n c o n s i d e r i n g a l l p o s s i b l e s tudent responses and i n 
de s ign ing app rop r i a t e a c t i o n on the pa r t o f the so f tware . A s tudent 
cannot exp lo re areas which the author of the software f a i l e d t o 
c o n s i d e r . Thus, these programs are " i n s t r u c t o r - d r i v e n . " The author 
o f the software serves as a sur rogate i n s t r u c t o r , c r e a t i n g a 
p a r t i c u l a r sequence o f a c t i v i t é s f o r the s tuden t . However 
s o p h i s t i c a t e d the branching i n the program may be, the s tudent cannot 
take the i n i t i a t i v e ; i n i t i a t i v e i s e x e r c i s e d on ly by the author o f 
the sof tware . 

I t i s u s e f u l to i d e n t i f y two software c a t e g o r i e s d i s t i n g u i s h e d 
by the i d e n t i t y o f the person i n charge of the e d u c a t i o n a l a c i v i t i e s 
tha t the software suppor t s . The f i r s t ca tegory i s Computer-Ass is ted 
I n s t r u c t i o n ( C A I ) . In CAI the r o l e of the software i s t o decide 
which a c t i v i t i e s the s tudent should pursue . Most e x i s t i n g software 
f o r chemica l educa t ion f a l l s i n t o t h i s c a t ego ry . We may a l s o , 
however, cons ide r a category o f software t ha t cou ld be l a b e l e d 
Computer -Ass is ted Learn ing ( C A L ) . I n such sof tware , the s tudent 
makes d e c i s i o n s about what he or she w i l l i n v e s t i g a t e w h i l e u s i n g the 
sof tware . S i m u l a t i o n s f a l l i n t o t h i s ca t egory . P ro fe s so r John 
G e l d e r ' s i d e a l gas law program (2^ i s a c l a s s i c example o f u s ing 
s i m u l a t i o n s i n chemica l e d u c a t i o n . I n u s ing tha t program the s tudent 
has c o n t r o l over the parameters, and by e x p l o r i n g the model c o u l d 
p o t e n t i a l l y l e a r n aspects o f the behavior o f i d e a l gases unknown t o 
the author o f the program. Other s i m u l a t i o n s may a l s o f a l l i n t o the 
category o f computer -ass i s ted l e a r n i n g . Apar t from s i m u l a t i o n s , 
examples o f software w i t h which the s tudent i s i n c o n t r o l and are 
d i f f i c u l t to f i n d . 

T h i s paper de sc r ibe s an example of a d i f f e r e n t s t y l e o f program 
which i s under the c o n t r o l o f the s tuden t . The p r o j e c t began i n the 
f a l l o f 1983 when Dick C o r n e l i u s spent pa r t o f a s a b b a t i c a l a t the 
U n i v e r s i t é de Nice working w i t h D a n i e l C a b r o l and Claude Cachet . The 
f i r s t task there was to w r i t e a chapter on microcomputers i n chemica l 
educa t ion f o r a book on computers i n chemi s t ry . Dur ing the course o f 
w r i t i n g t h i s chapter we desc r ibed programs a v a i l a b l e i n the d i f f e r e n t 
software s t y l e s : page t u r n e r s , d r i l l and p r a c t i c e , t u t o r i a l d i a l o g s , 
s i m u l a t i o n , p r e - l a b o r a t o r y a c t i v i t i e s , and p r o b l e m - s o l v i n g . In the 
area o f p r o b l e m - s o l v i n g , however, there was l i t t l e t ha t we cou ld 
d i s c u s s . Some software cou ld be used f o r p r o b l e m - s o l v i n g , but there 
were no examples o f programs w r i t t e n f o r the pr imary purpose of 
h e l p i n g s tudents l e a r n genera l p rob l em-so lv ing t echn iques . I t was to 
t h i s a r e a , t hen , t ha t we turned our programming a t t e n t i o n . The 
r e s u l t was a program tha t we c a l l e d GEORGE (3) t ha t runs on the 
Apple I I s e r i e s o f computers. GEORGE d i f f e r s very much from most 
programs a v a i l a b l e f o r chemica l educa t i on : GEORGE asks no ques t ions 
o f s t uden t s . In s t ead , s tudents take problems to GEORGE. GEORGE 
so lve s the problems tha t s tudents p rov ide and, most i m p o r t a n t l y , 
e x p l a i n s the s o l u t i o n s u s ing both t e x t and diagrams. I f i n s u f f i c i e n t 
or c o n t r a d i c t o r y i n fo rma t ion i s a v a i l a b l e , GEORGE can p rov ide 
d i a g n o s t i c comments to he lp the s tuden t . 

The domain i n which GEORGE operates i s a s m a l l but important one 
f o r i n t r o d u c t o r y chemis t ry . He works w i t h problems i n v o l v i n g the 
fundamental q u a n t i t i e s mass, volume, and number o f moles . He can 
a l s o work w i t h d e r i v e d q u a n t i t i e s such as d e n s i t y , molar mass, molar 
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c o n c e n t r a t i o n , e t c . The s p e c i f i c q u a n t i t i e s w i t h which GEORGE can 
work are presented i n F igu re 1. That f i g u r e i s taken from the 
on-screen documentation and a l s o g ives the a b b r e v i a t i o n s tha t 
s tudents may use as shorthand to i d e n t i f y the q u a n t i t i e s to GEORGE. 
GEORGE works w i t h the u n i t s g , L , m o l . For de r ived q u a n t i t i e s he 
understands the r a t i o s o f these u n i t s such as g / L f o r d e n s i t y . He 
a l s o understands the numer ica l p r e f i x e s ρ , η , μ, m, c , d , and k . 
He can work w i t h these p r e f i x e s i n ^ r a t i o s ^ o f u n i t s such as g/mL or 
nmol/raL, and he can a l s o accept dm or cm fo r volume. 

The L o g i c 

The b a s i c approach tha t GEORGE uses to s o l v e problems i s d imens ional 
a n a l y s i s , the same technique tha t many o f us use i n our own 
classrooms to teach s tudents how to s o l v e problems. Ins tead of 
having numerous formulas f o r d i f f e r e n t k i n d s o f problems, GEORGE 
s imply con t a in s a se t of h e u r i s t i c r u l e s which he f o l l o w s to search 
f o r a s o l u t i o n . One r e s u l t o f u s ing these h e u r i s t i c r u l e s i s tha t he 
can s o l v e problems never worked by the authors o f the program. 
Another r e s u l t i s tha t GEORGE may be ab l e to make progress toward a 
s o l u t i o n even i f incomplete i n fo rma t ion i s a v a i l a b l e . I n such an 
i n s t a n c e , GEORGE may be ab l e t o respond w i t h a statement such as " I f 
you c o u l d g ive me the d e n s i t y of a l c o h o l , then I cou ld so lve the 
p rob lem." The r u l e s are very s imple i n concept . F i r s t GEORGE 
examines the v a r i o u s p ieces of data a v a i l a b l e . He examines a l l 
p o s s i b l e p a i r s o f data t o see whether any p a i r can be m u l t i p l i e d or 
d i v i d e d to g i v e immediately the s o l u t i o n . I f he cannot f i n d a 
s o l u t i o n i n tha t way, he checks to see whether he can apply a 
r e l a t i o n to generate a new p iece of d a t a . I f GEORGE cannot apply a 
r e l a t i o n , he searches fo r in t e rmed ia te r e s u l t s t ha t might represent a 
s tep toward the s o l u t i o n . GEORGE can search fo r two types o f 
i n t e r m e d i a t e s . The p re fe r red type i s the r e s u l t o f u n i t s c a n c e l l i n g 
to y i e l d a fundamental q u a n t i t y . Thus d i v i d i n g the mass of a 
substance by i t s molar mass i s a p re fe r r ed method to form an 
in te rmedia te r e s u l t . Less d e s i r a b l e i s the format ion o f an 
in t e rmed ia te r e s u l t which i s not a fundamental q u a n t i t y but which 
represen ts i n fo rma t ion expressed i n a manner not represented by other 
data or i n t e r m e d i a t e s . Each t ime GEORGE c a l c u l a t e s a new q u a n t i t y , 
he begins aga in to look f o r an immediate s o l u t i o n . These are a l l the 
r u l e s t ha t GEORGE needs to f i n d s o l u t i o n s to m i l l i o n s o f d i f f e r e n t 
problem s ta tements . The r e s u l t i s u s u a l l y a s o l u t i o n approached i n 
the same manner tha t a teacher might use f o r an e x p l a n a t i o n . 

The Program 

The primary menu f o r GEORGE i s shown i n F igu re 2 . T h i s i s the way 
tha t the menu appears when no i n fo rma t ion has been g iven to GEORGE; 
more op t ions are a v a i l a b l e a f t e r a problem has been d e f i n e d . To 
understand how GEORGE operates we w i l l f i r s t cons ide r an o p t i o n tha t 
i s ou t s i de the primary t h r u s t o f GEORGE, namely, o p t i o n C, C a l c u l a t e 
Molar Mass. The student sees a screen which says "Type the f o r m u l a : " 
There a s tudent may type a formula as s imple as NaCl o r more complex 
such as M g ( C 1 0 z , ) 2 . 6 H 2 0 . GEORGE c a l c u l a t e s the molar 
mass, e x p l a i n i n g to the student how the c a l c u l a t i o n i s done as shown 
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Instructions (page 1) 

George understands 11 different quantities. Each of these quantitic has a synbol and a nane: 
Synbol 

η η 
Ρ 
ν d c ne 
H «r nr vr 

Nane 
Mass no. of noies no. of particle volune density nolarity nass cone, nolar Mass Mass r a t i o 
M O Iar r a t i o volune r a t i o 

Press the space bar to continue. 

Figure 1. Quantities with which GEORGE can work. (Reproduced with 
permission from Ref. 3. Copyright 1985 COMPress.) 

Available Options 

D) Enter or Nodify Data 
R) Enter a Relation 
L) Load a Problen froM Disk 
C) Calculate Molar Mass 
?> See Instructions 

Press the key o f your choice. 

Figure 2. The primary menu screen from GEORGE. (Reproduced with 
permission from Ref. 3. Copyright 1985 COMPress.) 
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i n F i g u r e 3 . The a b i l i t y o f GEORGE to e x p l a i n what he has done i s 
the primary reason f o r h i s e x i s t e n c e . Other programs, such as TK! 
S o l v e r (à), have a much l a r g e r domain but f a i l to e x p l a i n the 
l o g i c tha t leads to the answer. The emphasis w i t h i n GEORGE i s on the 
s o l u t i o n as a process r a the r than upon the answer as a number. 

Le t us cons ide r next the data page which i s used to def ine a 
problem. The f i r s t task f o r the s tudent i s to i d e n t i f y t h é d e s i r e d 
q u a n t i t y . T h i s a c t i o n i s a d e s i r a b l e f i r s t s tep f o r a s tudent 
s o l v i n g a problem w i t h o r wihout the a i d o f a computer. GEORGE 
understands h i s domain. I f a s tudent i d e n t i f i e s " t ime" as the 
d e s i r e d q u a n t i t y , GEORGE w i l l respond "Unknown q u a n t i t y . " Each 
q u a n t i t y needs a l a b e l . So, f o r example, a s tudent may t e l l GEORGE 
to f i n d the mass o f a h a i r . Here " h a i r " i s the l a b e l and i s used by 
GEORGE i n the d imens iona l a n a l y s i s t o determine which data can be 
used toge the r . Students must s p e c i f y a c o n s i s t e n t u n i t . I f mol i s 
g iven as the u n i t f o r the mass o f a h a i r , GEORGE w i l l r e p l y " U n i t 
does not agree w i t h q u a n t i t y . " 

The s i m p l e s t k i n d of problem tha t GEORGE can work and e x p l a i n i s 
a me t r i c u n i t c o n v e r s i o n . For example, i f GEORGE i s asked t o f i n d 
the mass o f a h a i r i n m i l l i g r a m s , the s tudent c o u l d supply on data 
l i n e A the mass of tha t h a i r i n grams. The numer ica l va lues may be 
entered i n dec imal o r e x p o n e n t i a l n o t a t i o n w i t h the e x p o n e n t i a l 
n o t a t i o n appear ing w i t h a s u p e r s c r i p t j u s t as one would w r i t e i t on 
paper . When GEORGE i s asked to s o l v e t h i s problem he s t a t e s t ha t the 
answer was s u p p l i e d i n da ta l i n e A . T h i s statement i s t r u e , but a 
s tudent working a u n i t conve r s ion problem needs to have a b e t t e r 
e x p l a n a t i o n . GEORGE d i s p l a y s the worked a r i t h m e t i c showing the u n i t 
c o n v e r s i o n . An example of such a d i s p l a y i s shown i n F i g u r e 4 . 

As an example o f a s l i g h t l y more d i f f i c u l t problem, cons ide r a 
ques t ion which asks f o r the d e n s i t y o f e thano l i n g/mL. A student 
might p rov ide GEORGE w i t h the mass o f a p a r t i c u l a r sample o f e t h a n o l . 
The mass cou ld be, f o r example, 25 grams. I f a s tudent t e l l s GEORGE 
to s o l v e the problem w i t h o n l y t h i s p i ece o f i n f o r m a t i o n , he w i l l 
q u i c k l y r e p l y tha t he cannot s o l v e the problem wi thou t some 
in fo rma t ion r e l a t e d to the volume of e t h a n o l . I f the s tudent then 
s u p p l i e s the volume o f e t h a n o l , GEORGE e x p l a i n s i n p l a i n E n g l i s h how 
to get the answer: " S o l u t i o n found by d i v i d i n g the mass of e thano l by 
the volume o f e thano l to g i v e the d e n s i t y of e t h a n o l . " GEORGE works 
i n t e r n a l l y w i t h the u n i t s g , L , and m o l . Thus, a f t e r he completes 
the c a l c u l a t i o n i t i s necessary f o r him to conver t the answer to the 
u n i t s requested when the d e s i r e d q u a n t i t y was s p e c i f i e d . Al though 
GEORGE has provided a t e x t u a l e x p l a n a t i o n of the s o l u t i o n p rocess , i t 
may be h e l p f u l f o r the s tudent to see a diagram o f how the p ieces of 
i n fo rma t ion f i t t oge the r . The diagram f o r the problem i n v o l v i n g the 
d e n s i t y o f e thano l i s shown i n F igu re 5. The symbols A and Β i n t h i s 
diagram r e f e r to the l i n e s on the data page and are fu r the r 
i d e n t i f i e d to the s tudent when the l e t t e r s A and Β are pressed on the 
keyboard . 

A s tudent can save problems on the d i s k fo r l a t e r use and the 
d i s k i s i n i t i a l l y s u p p l i e d w i t h a se t o f complete problems. One 
example which comes on the d i s k i n v o l v e s c a l c u l a t i n g the m o l a r i t y of 
a n i l i n e i n s o l u t i o n . The a v a i l a b l e data a r e : 
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Calculate Molar Mass 

The Holar nass i s 331.297 g/nol. 
Mg<C104)2-6H20 
Cl: 1 0 : 4 

X 
X 

35. 15. 453 9994 
Subunit: 99. 4506 χ 2 = 198. 9012 
H : 2 0 : 1 

X 
X 

1. 15. 0079 9994 
Subunit: 18. 0152 x 6 = 108. 0912 
Mg: 1 X 24. 305 24. 305 
Total: 331. 297 

Press the space bar to continue. 

Figure 3. Screen explaining the c a l c u l a t i o n of molar mass. 
(Reproduced with permission from Ref. 3. Copyright 1985 COMPress.) 

Netnork 

You supplied the result on data line A. 
You need only wake the proper conversion 
of units: 

.0034 g κ = 3.40 ng 
1 g 

Press the space bar to continue. 

Figure 4. The d i s p l a y that GEORGE uses to show the s o l u t i o n to 
a unit conversion problem. (Reproduced with permission from Ref. 
3. Copyright 1985 COMPress.) 

 P
ub

lic
at

io
n 

D
at

e:
 A

pr
il 

30
, 1

98
6 

| d
oi

: 1
0.

10
21

/b
k-

19
86

-0
30

6.
ch

01
1

In Artificial Intelligence Applications in Chemistry; Pierce, T., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1986. 



11. CORNELIUS E T A L . Applying AI Techniques to Chemistry Education 131 

A . Volume o f C 6 H 5 N H 2 3.00 mL 

B . Volume o f s o l u t i o n 0.100 L 

C . Dens i ty of C 6 H 5 N H 2 1.022 g/mL 

D. Molar Mass o f C 6 H 5 N H 2 

The s tudent does not need to supply the numer ica l va lue f o r a n i l i n e 
i f the formula o f a n i l i n e i s used as a l a b e l . GEORGE can do the 
c a l c u l a t i o n o f the molar mass from the fo rmula , but the s tudent must 
s p e c i f y tha t the molar mass i s a p iece o f i n f o r m a t i o n to be used i n 
the problem. When GEORGE i s t o l d to s o l v e t h i s problem, he f i r s t 
f i n d s an in t e rmed ia te r e s u l t by m u l t i p l y i n g the d e n s i t y o f a n i l i n e by 
the volume o f a n i l i n e to g i v e the mass o f a n i l i n e . He then d i v i d e s 
the mass o f a n i l i n e by the molar mass to g i v e the number o f moles of 
a n i l i n e i n s o l u t i o n . F i n a l l y , he d i v i d e s the number o f moles o f 
a n i l i n e by the volume of s o l u t i o n to get the d e s i r e d q u a n t i t y , the 
m o l a r i t y o f a n i l i n e . The diagram he draws to e x p l a i n t h i s s o l u t i o n 
i s shown i n F i g u r e 6 . In t h i s f i g u r e the l e t t e r s represent 
i n f o r m a t i o n found on the data page, w h i l e the numbers represen t 
in t e rmed ia te s c a l c u l a t e d w h i l e f i n d i n g the s o l u t i o n . P r e s s i n g one o f 
the l e t t e r s or numbers shown b r i n g s t o the top o f the screen an 
i d e n t i f i c a t i o n o f tha t p a r t i c u l a r q u a n t i t y . 

The data page i s not the on ly way to p rov ide GEORGE w i t h 
i n f o r m a t i o n . Cons ider f o r example a s imple ac id -base t i t r a t i o n . On 
the data page a s tudent c o u l d s p e c i f y the d e s i r e d q u a n t i t y as the 
m o l a r i t y o f HC1 i n a c i d s o l u t i o n and g i v e as a v a i l a b l e data the 
m o l a r i t y o f NaOH i n base s o l u t i o n , the volume o f base s o l u t i o n and 
the volume o f a c i d s o l u t i o n . T h i s i n f o r m a t i o n i s i n s u f f i c i e n t t o 
support a s o l u t i o n to the problem. The s tudent must a l s o s p e c i f y the 
s t o i c h i o m e t r i c r e l a t i o n between the number o f moles o f HC1 and the 
number o f moles o f NaOH. An example o f a r e l a t i o n page showing t h i s 
d e f i n i t i o n i s shown i n F i g u r e 7 . Once t h i s i n f o r m a t i o n i s a v a i l a b l e , 
GEORGE can s o l v e the problem, e x p l a i n i n g as he works what i n f o r m a t i o n 
i s combined to f i n d an in t e rmed ia t e r e s u l t and a t what p o i n t the 
r e l a t i o n i s used . The use o f r e l a t i o n s g r e a t l y i n c r e a s e s the number 
o f d i f f e r e n t k i n d s o f problems tha t GEORGE can hand le . 

As an example o f a more complex problem, cons ide r one used by 
Johnstone (5) i n an a r t i c l e d i s c u s s i n g p rob l em-so lv ing pub l i shed 
l a s t year i n the J o u r n a l o f Chemical E d u c a t i o n : "What volume o f 
1.0 M h y d r o c h l o r i c a c i d would r eac t w i t h e x a c t l y 10.0 g o f c h a l k ? " 
The d e s i r e d q u a n t i t y i s the volume of s o l u t i o n . The a v a i l a b l e data 
are the m o l a r i t y o f HC1 i n s o l u t i o n , the mass o f c h a l k , and the molar 
mass o f CaCOo. In a d d i t i o n , two r e l a t i o n s are r e q u i r e d . One 
i d e n t i f i e s cha lk as c a l c i u m carbonate by s t a t i n g tha t the mass o f 
cha lk equals the mass of CaC0~. Another g i v e s the s t o i c h i o m e t r y 
by s ay ing tha t two t imes the number of moles o f CaCO^ equals the 
number o f moles of HC1. The diagram showing the s o l u t i o n i n t h i s 
case occupies s e v e r a l sc reens ; a separate screen i s used to show each 
a p p l i c a t i o n of a r e l a t i o n . 
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NetHork 
Here i s a diagran of hon I used the 
various pieces of information to reach a 
solution. 

Β 

For d e t a i l s type the r e l e v a n t l e t t e r or 
nunber. ESC d i s p l a y s Menu. 

F i g u r e 5. Diagram showing t h a t t h e d e n s i t y o f e t h a n o l i s o b t a i n e d 
by d i v i d i n g t h e mass o f e t h a n o l by t h e volume o f e t h a n o l . ( R e p r o 
duced w i t h p e r m i s s i o n f r o m R e f . 3. C o p y r i g h t 1985 COMPress.) 

NetHork 
Here i s a diagran of hou I used the 
various pieces of information to reach a 
solution. 

A 

Β .···'"' 

For d e t a i l s type the r e l e v a n t l e t t e r or 
nunber. ESC d i s p l a y s Menu. 

F i g u r e 6. Diagram showing how p i e c e s o f d a t a a r e u s e d t o g e t h e r t o 
f i n d t h e s o l u t i o n t o t h e p r o b l e m i n v o l v i n g t h e m o l a r i t y o f 
a n i l i n e . ( R e p r o d u c e d w i t h p e r m i s s i o n f r o m R e f . 3. C o p y r i g h t 1985 
COMPress.) 

Relation 
Coef. Quantity 

no. of MOles 
of HC1 

= no. of Moles 
of NaOH 

Press the space bar to continue. 

F i g u r e 7. A sample o f how a r e l a t i o n c a n be d e f i n e d . ( R e p r o d u c e d 
w i t h p e r m i s s i o n f r o m R e f . 3. C o p y r i g h t 1985 COMPress.) 
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Extending the Domain 

The ex t ens ion of the domain o f a p p l i c a t i o n f o r t r e a t i n g a g rea te r 
v a r i e t y of problems r e q u i r e s r e l e a s i n g GEORGE from the c o n s t r a i n t o f 
us ing on ly d imens iona l a n a l y s i s to so lve problems. For t h i s 
ex t ens ion we are s h i f t i n g to a system o f l o g i c which permi ts f r e e l y 
the d e f i n i t i o n o f both q u a n t i t a t i v e and q u a l i t a t i v e r e l a t i o n s . I n 
a d d i t i o n , the h e u r i s t i c r u l e s can be represented w i t h i n the same 
fo rma l i sm . The programming language P r o l o g (6^) has been used i n 
c r e a t i n g a prototype o f a more capable problem s o l v e r . C u r r e n t l y the 
pro to type handles a l l o f the problems tha t GEORGE can handle , but i n 
a d d i t i o n can dea l w i t h gas law problems and p h y s i c a l t r a n s f o r m a t i o n s . 

Conc lu s ion 

We see th ree l e v e l s o f use f o r GEORGE. A t the f i r s t l e v e l , s tudents 
bene f i t from the r i g o r r e q u i r e d even to supply i n f o r m a t i o n to GEORGE. 
Students must i d e n t i f y the d e s i r e d q u a n t i t y , l a b e l the q u a n t i t y , and 
supply the u n i t . For each p i ece o f a v a i l a b l e data the s tudent must 
be j u s t as r i g o r o u s . T h i s r i g o r should he lp s tudents develop good 
h a b i t s f o r approaching problems. At the second l e v e l , GEORGE a c t s i n 
much the same way tha t a roommate might ac t when h e l p i n g a f e l l o w 
s tudent w i t h a problem. We can imagine a roommate s a y i n g " Y e s , I 
w i l l show you how to do t h i s problem, but you do the next one by 
y o u r s e l f , " o r "You work the problem f i r s t , and then I w i l l show you 
how I would have done i t . " I n t h i s sense GEORGE a c t s as a 
"p rob l em-so lv ing pa r tne r " (J7). At the t h i r d l e v e l o f use , a 
s tudent i s p r o f i c i e n t a t working the k i n d s o f problems tha t GEORGE 
can s o l v e . GEORGE then becomes a t o o l as an a i d t o s o l v i n g even 
l a r g e r problems. The program f rees the s tudent from the tedium of 
working through the a r i t h m e t i c and l e t s the s tudent concent ra te on 
the chemis t ry of the l a r g e r problem. As t eache r s , we seek ways to 
he lp s tudents w i t h those l a r g e r problems. A program such as GEORGE 
i s one approach tha t we c o u l d use to he lp s tudents expand t h e i r 
p rob l em-so lv ing c a p a b i l i t y to dea l w i t h problems tha t c o u l d be 
t ed ious indeed w i t h on ly a c a l c u l a t o r as a t o o l . 

Most o ther software f o r chemica l educa t ion i s o f the k i n d tha t 
an i n s t r u c t o r would s e l e c t f o r a c l a s s . I m p l i c i t l y o r e x p l i c i t l y the 
i n s t r u c t o r says "Student , go use t h i s program." GEORGE may l i e i n a 
very d i f f e r e n t realm i n which the s tudents r a t he r than the 
i n s t r u c t o r s a re the ones who choose the program. The d i f f e r e n c e 
cou ld be one s m a l l s tep toward f u l f i l l i n g the promise tha t computers 
ho ld f o r f a r - r e a c h i n g changes i n e d u c a t i o n . 

Literature Cited 

1. The Pierce Report, "Computers in Higher Education"; A report of 
the President's Science Advisory Committee, February 1967. 

2. Gelder, J.; Snelling R. "Chem Lab Simulation 2"; High Technology 
Inc., Tulsa, OK, 1979. 

3. Cornelius, R.; Cabrol D.; Cachet C. "GEORGE - A Problem-Solver 
for Chemistry Students"; COMPress, Wentworth, ΝΗ, 1985. 

4. TK! Solver, Software Arts, Wellesley, MA, 1983 
5. Johnstone, Α. H. J. Chem Educ. 1984, 61, 847. 

 P
ub

lic
at

io
n 

D
at

e:
 A

pr
il 

30
, 1

98
6 

| d
oi

: 1
0.

10
21

/b
k-

19
86

-0
30

6.
ch

01
1

In Artificial Intelligence Applications in Chemistry; Pierce, T., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1986. 



134 ARTIFICIAL INTELLIGENCE APPLICATIONS IN CHEMISTRY 

6. Colmerauer, Α.; Janoui, Η.; Caneghen, M. "Prolog, bases 
theoriques et developpements actuels"; Technique et Science 
Informatique 1983, 4, 271. 

7. Cabrol D.; Cachet, C.; Cornelius R., "De nouveaux outils pour 
apprendre: les partenaires de résolution de problèmes: GEORGE et 
sa descendance"; Methodes Informatiques dans l'Enseignement de la 
Chimie, September 17, 1985, Li l l e , France. 

RECEIVED December 17, 1985 

 P
ub

lic
at

io
n 

D
at

e:
 A

pr
il 

30
, 1

98
6 

| d
oi

: 1
0.

10
21

/b
k-

19
86

-0
30

6.
ch

01
1

In Artificial Intelligence Applications in Chemistry; Pierce, T., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1986. 



12 
Analogy and Intelligence in Model Building 

W. Todd Wipke and Mathew A. Hahn 

Department of Chemistry, University of California, Santa Cruz, CA 95064 

This paper describes a new approach to building 
molecular models using methods of expert systems. We are 
applying symbolic reasoning to a problem previously only 
approached numerically. The goals of this project were 
to develop a rapid model builder that mimicked the manual 
process used by chemists. A further aim was to provide a 
justification for the model as a chemist would justify a 
particular conformation. The AIMB algorithm reported 
here is extremely fast and has a complexity that 
increases linearly with the number of atoms in the model. 

T h i s paper d e s c r i b e s the f i r s t a p p l i c a t i o n o f analogy and 
i n t e l l i g e n c e to molecular model b u i l d i n g . I t r epresen t s a depar ture 
from p rev ious methods, a new approach aimed a t r a p i d , au tomat ic , 
accura te molecular model b u i l d i n g . 

Background 

Curren t approaches to molecular model b u i l d i n g i n v o l v e e i t h e r manual 
c o n s t r u c t i o n or energy m i n i m i z a t i o n . Manual c o n s t r u c t i o n o f models 
i s performed us ing programs l i k e COORD. C O The user s p e c i f i e s 
i n t e r n a l coo rd ina t e s (bond l e n g t h , bond ang le , and d i h e d r a l angle) 
and the program conver t s the i n t e r n a l coord ina te s i n t o C a r t e s i a n 
c o o r d i n a t e s . Programs l i k e COORD are f r equen t ly used to generate 
i n i t i a l C a r t e s i a n coord ina te s for refinement by other computat ional 
programs. The cumbersome data en t ry o f COORD can be s i m p l i f i e d by 
having the program a u t o m a t i c a l l y s e l e c t bond d i s t ances and bond 
angles based on the atom types and bond types specif ied.(2) Us ing 
manual c o n s t r u c t i o n from i n t e r n a l c o o r d i n a t e s , c o n s t r u c t i n g cha ins i s 
easy, but c o n s t r u c t i n g c lo sed r i n g s i s d i f f i c u l t . One must know 
e x a c t l y the c o r r e c t se t o f bond l e n g t h s , ang les , and d i h e d r a l angles 
to fo rce the c h a i n to c l o s e as a pe r f ec t r i n g . 

An ex tens ion o f the atom c o n s t r u c t i o n method a l l ows adding 
groups or predef ined templates r a the r than j u s t atoms. Chemlab 
11 , (3) M0LBUILD,(4) MMSX,(5) S y b y l , and Chemgraph a l l use t h i s 
method. Preformed r i n g s can be added as templa tes , thus a v o i d i n g the 
r i n g c l o s u r e d i f f i c u l t y . These methods r e s u l t d i r e c t l y i n a 
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12. WIPKE A N D H A H N Analogy and intelligence in Model Building 137 

th ree -d imens iona l model , but are not au tomat ic . B u i l d i n g a model 
tha t has the r i g h t s t e reochemis t ry i s an a d d i t i o n a l problem s i n c e 
s p e c i f i c a t i o n o f s t e reochemis t ry i n these systems i s not s i m p l e . 

The f i r s t automatic model b u i l d e r was PRXBLD, (60 a module o f the 
SECS s y n t h e s i s p lann ing program07) and l a t e r d i s t r i b u t e d as a 
s tand-alone program. PRXBLD takes a two-dimensional s t r u c t u r a l 
diagram wi th s te reochemis t ry and minimizes the 2-D s t r u c t u r e to a 3-D 
s t r u c t u r e . I t has been incorpora ted i n the PROPHET, DENDRAL, and 
ADAPT systems and i s d i s t r i b u t e d by Molecu la r Des ign L i m i t e d . PRXBLD 
was the f i r s t molecular modeling program to i n t e g r a t e symbol ic 
i n t e l l i g e n c e and h e u r i s t i c s wi th numer ica l methods. Some o f the 
h e u r i s t i c s a re : 1) Ignore hydrogen atoms, expand carbon to i n c l u d e 
the volume tha t the hydrogens should occupy. 2) Ignore low energy 
terms and avoid express ions wi th l a r g e exponents when the s t r u c t u r e 
i s b a d l y d i s t o r t e d . 3) Use four stages o f re f inement , change stages 
by the s t r a i n energy per atom. 4) Inc lude a pseudo p o t e n t i a l to 
fo rce m i n i m i z a t i o n to the s te reochemis t ry s p e c i f i e d . 5) Use analogy 
to s e l e c t parameters for fo rce cons tants tha t are not a v a i l a b l e . 
PRXBLD never ba lked for l a c k o f a parameter, thus always gave an 
answer. Using PRXBLD, the chemist c o u l d , for the f i r s t t i m e , o b t a i n 
a t h ree -d imens iona l model by s imply drawing the two-dimensional 
s t r u c t u r a l d iagram. Although i t was the f a s t e s t model b u i l d e r o f i t s 
t i m e , c e r t a i n types o f s t r u c t u r e s s t i l l r e q u i r e d cons ide rab l e 
computation because PRXBLD used numer ica l m i n i m i z a t i o n . 

More r e c e n t l y , the SCRIPT program by Cohen(jB) a l so takes a 
drawing as input and uses a l i m i t e d l i b r a r y o f r i n g conformations to 
generate approximate geometry fo r m i n i m i z a t i o n . D o l a t a , u s ing PROLOG 
and p r e d i c a t e c a l c u l u s methods (analogous to those used i n our QED(£) 
work) developed an expert system c a l l e d WIZARD (10) to s e l e c t a 
reasonable se t o f i n t e r n a l coord ina tes for an a c y c l i c molecu le . From 
these i n t e r n a l coord ina tes C a r t e s i a n coord ina te s are de r ived which 
are then g iven to MM2 for re f inement . WIZARD has not yet handled 
c y c l i c systems. 

There i s a need for qu ick 3-D model g e n e r a t i o n . Models are 
r e q u i r e d where knowledge o f molecular shape i s e s s e n t i a l to the 
understanding o f s t r u c t u r e - a c t i v i t y and s t r u c t u r e - r e a c t i v i t y 
r e l a t i o n s h i p s . Most c e r t a i n l y there w i l l be programs i n the future 
tha t hypothes ize s t r u c t u r e s ; these programs w i l l need r a p i d model 
genera t ion i n order to evaluate 3-D c o n s t r a i n t s . For these 
a p p l i c a t i o n s , the models must be c rea ted a u t o m a t i c a l l y , wi thout 
i n t e r a c t i v e i n t e r v e n t i o n . We a l so e n v i s i o n the v a s t l i b r a r i e s o f 
molecular s t r u c t u r e s s tored i n chemical data bases w i l l need to be 
converted to 3-D geometry l i b r a r i e s i n order to use these data bases 
i n des ign ing new 3-D s t r u c t u r e s . 

Goals of AIMB 

The goa l s of. AIMB are l i s t e d i n F igure 1. We wish to generate models 
r a p i d l y and s y m b o l i c a l l y . Chemists have over the years acqui red a 
great dea l o f knowledge about the s t r u c t u r e o f molecu les ; we p l an to 
g ive AIMB the advantage o f access to tha t knowledge. S i m i l a r l y , 
chemists have used v a r i o u s methods to reason by ana logy: 
i s o - e l e c t r o n i c s t r u c t u r e s , va lence e l e c t r o n model , the p e r i o d i c 
t a b l e , e t c . We wish to incorpora te such knowledge i n AIMB. The 
avoidance o f molecular mechanics i s a negat ive g o a l ; perhaps i t i s 
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138 ARTIFICIAL INTELLIGENCE APPLICATIONS IN CHEMISTRY 

more c o r r e c t say our goa l i s to demonstrate tha t i t i s p o s s i b l e to 
b u i l d good models wi thout molecu la r mechanics. Af t e r a l l , chemists 
b u i l d ve ry good models manually and men ta l l y without m i n i m i z a t i o n . 

1. B u i l d 3-D Model RAPIDLY, SYMBOLICALLY 
2 . Use Knowledge and Analogy l i k e Chemist 
3. Avoid molecular mechanics 
4 . P rov ide support for r e s u l t s : 

a) L i t e r a t u r e precedent 
b) Causes o f u n c e r t a i n t y 
c) Q u a l i t y assessment 
d) Next bes t models 

5 . E x t e n d i b l e to conformat iona l search 

F igu re 1. Goals o f AIMB. 

A s i g n i f i c a n t goa l i s to have our model b u i l d e r e x p l a i n and 
j u s t i f y i t s answer. Computing methodology now enables us to show how 
an answer i s d e r i v e d , the most notable example o f e x p l a n a t i o n 
c a p a b i l i t i e s i s MYCIN, a medica l d i a g n o s i s program.(11) Chemists 
have the same need for e x p l a n a t i o n o f computing r e s u l t s t ha t doc to r s 
have. Users o f model b u i l d i n g programs are f r equen t ly non-exper t s . 
They need to know whether the program tha t someone e l s e wrote i s 
a p p l i c a b l e to t h e i r problem, and to what degree the program can 
handle t h e i r problem. They should r e c e i v e , for example, i n d i c a t i o n s 
o f the l i t e r a t u r e precedent showing tha t the method can handle tha t 
case w e l l , or an example o f an evaluated answer for a " s i m i l a r " 
problem. Every answer i n sc ience c a r r i e s an u n c e r t a i n t y , but cu r r en t 
numer ica l programs do not r e v e a l t h i s u n c e r t a i n t y to the u se r . The 
model b u i l d e r should e x p l a i n what the causes for the u n c e r t a i n t y are 
as w e l l as the probable magnitude. I t i s d e s i r a b l e to o b t a i n an 
o v e r a l l q u a l i t y assessment o f the model and some i n d i c a t i o n which 
p a r t s o f the model are most s t r o n g l y supported and which pa r t s are 
most tenuous. Thus the q u a l i t y assessment must a l s o apply t o the 
i n d i v i d u a l components o f the model when p o s s i b l e . Another e x c e l l e n t 
way t o j u s t i f y the "answer" i s by p resen t ing for comparison the "next 
bes t " models . 

I f we succeed wi th these o b j e c t i v e s , the f i n a l goal i s to apply 
the same methods wi th minor m o d i f i c a t i o n to generate a l l " reasonable" 
conformers o f a compound, i . e . , to develop a symbol ic conformat iona l 
search c a p a b i l i t y . 

Components of AIMB 

We env i s ioned i n our des ign o f AIMB t h a t we c o u l d use a l i b r a r y o f 
X - r a y c r y s t a l s t r u c t u r e s as our "exper ience" or knowledge o f t h r ee -
dimensional models o f molecular s t r u c t u r e s . I t c o u l d , o f cou r se , be 
a l i b r a r y o f computed s t r u c t u r e s , but we favor hav ing an exper imenta l 
b a s i s for our i n f e r e n c e s . In our reasoning we need to d u p l i c a t e the 
l ea rned chemical r u l e s o f analogy; i n t h i s case , those ana log ies tha t 
preserve the th ree -d imens iona l s t r u c t u r e o f the molecu le . A module 
to analyze the problem to be s o l v e d , and a module to cons t ruc t the 
f i n a l th ree -d imens iona l model seemed obv ious . G r a p h i c a l input o f the 
problem and output o f the r e s u l t seemed o b l i g a t o r y . In f a c t , we even 
r e l y h e a v i l y on g raph ics for observ ing the ope ra t i on o f the program 
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12. WIPKE A N D H A H N Analogy and Intelligence in Model Building 139 

for debugging purposes . A model or th ree -d imens iona l in fe rence 
eva lua tor i s a l s o impor tan t . L a s t l y , to cons t ruc t an e x p l a n a t i o n , 
the program needs to e x t r a c t from i t s in fe rences and knowledge base 
the t r a i l o f l o g i c and suppor t ing data for the r e s u l t i n g t h r e e -
dimensional model . I t a l s o needs to r e t a i n runners-up models and the 
suppor t ing data for them. 

1 Create l i b r a r y o f models 
2 Enter s t r u c t u r a l diagram o f t a rge t 
3 Pe rce ive t a rge t 
4 Target or analogs i n l i b r a r y ? 
5 No, D i v i d e i n t o subproblems, s o l v e each 
6 Assemble so lved subproblem pa r t s 
7 Compute degree o f f i t o f subparts 
8 Prepare suppor t ing data 
9 D i s p l a y completed model 

F igu re 2 . AIMB a l g o r i t h m . 

AIMB Procedure 

The sequence o f events i n AIMB i s summarized i n F igu re 2 . F i r s t the 
l i b r a r y o f exper ience (known s t r u c t u r e s ) i s processed i n t o a form for 
r a p i d r e t r i e v a l . In t h i s paper we used a 2000 compound l i b r a r y from 
the Cambridge C r y s t a l F i l e . Each o f these s t r u c t u r e s represen ts an 
exper imenta l r e s u l t w i th the p r e c i s i o n o f the c r y s t a l s t r u c t u r e 
refinement and l i t e r a t u r e re fe rence to the o r i g i n a l paper. These are 
not "averaged" templa tes , a l though noth ing i n our des ign prec ludes 
us ing a l i b r a r y o f averaged templates or t h e o r e t i c a l l y c a l c u l a t e d 
s t r u c t u r e s . The l i b r a r y i s processed once. New exper imenta l r e s u l t s 
can be entered i n c r e m e n t a l l y by p rocess ing j u s t the new s t r u c t u r e s . 

Model b u i l d i n g begins wi th the chemist drawing the 
two-dimensional s t r u c t u r a l diagram o f the d e s i r e d s t r u c t u r e wi th 
s t e reochemis t ry , now a w e l l - e s t a b l i s h e d p r a c t i c e . ( 1 2 ) , ( 1 3 ) The t a rge t 
i s pe rce ived to i d e n t i f y r i n g s , ( 1 4 ) c h a i n s , a r o m a t i c i t y , and 
s t e reochemis t ry , (15) but c u r r e n t l y not f u n c t i o n a l groups. The 
c a n o n i c a l SEMA name i s a l s o generated.(16) 

AIMB f i r s t determines i f the t a r g e t or c l o s e analogs are 
conta ined i n the knowledge base . T h i s access to the knowledge base 
i s ins tantaneous because we use hash coding methods.(17) I f something 
i s found, i t s e l e c t s the most r e l a t i v e exper ience (known model from 
the knowledge base) and uses tha t geometry for the problem. We w i l l 
d i s c u s s how AIMB eva lua tes "c loseness" o f ana log ies i n a moment. I f 
there i s no c l o s e analog to the whole t a rge t compound, AIMB uses a 
" d i v i d e and conquer" s t r a t e g y . The problem i s d i v i d e d i n t o 
subproblems each o f which i s t r ea ted as a new problem. As i n genera l 
systems a n a l y s i s , the bes t s u b d i v i s i o n s o f a system are those tha t 
minimize connect ions ( i n t e r a c t i o n s ) between subsystems. In our case 
we s e l e c t r i n g assemblies(14) and cha ins as s u b d i v i s i o n s . When the 
component i s carved ou t , we a l s o r e t a i n in fo rma t ion about the contex t 
i n which the component r e s i d e s . 

These components or subproblems are p r i o r i t i z e d to so lve the 
l a r g e s t , most r i g i d r i n g assemblies f i r s t . Th i s w i l l force an e a r l y 
f a i l , i f f a i l we must. AIMB seeks the c l o s e s t ana log ies to t h i s 
subproblem present i n the knowledge base . F i r s t i t l ooks for 
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components i n an i d e n t i c a l environment w i t h i d e n t i c a l s t r u c t u r e , next 
wi th atom type a n a l o g i e s , then wi th d i f f e r e n t environment and 
d i f f e r e n t atom types , r e l a x i n g the matching c o n s t r a i n t s u n t i l one or 
more analogs are found. 

The so lved subparts are then assembled by the c o n s t r u c t o r . The 
degree o f f i t i s computed and r e t a i n e d for l a t e r e v a l u a t i o n . The 
process con t inues u n t i l a l l subproblems are s o l v e d . Then the 
e x p l a n a t i o n module prepares the suppor t ing exp lana t ion for the model 
from the reasoning t r a i l and e v a l u a t i o n r e s u l t s . The f i n a l model i s 
then d i s p l a y e d and the exp lana t ion presen ted . 

Our system a r c h i t e c t u r e i s i l l u s t r a t e d i n F igure 3 w i t h the 
input screen shown i n F i g u r e 4. G r a p h i c a l inpu t i s handled p r i m a r i l y 
by the PS300 system wi th o c c a s i o n a l messages pass ing between the 
PS300 and the VAX. The smal l window i s a r o t a t a b l e th ree -d imens iona l 
view o f the deve loping model . 

We w i l l take 7-benzyl-2-norbornanone as an example for the model 
b u i l d i n g p rocess . F igu re 4 shows the compound as i t has been drawn 
i n 2-dimensions by the u se r . The program does not f i n d an exact 
match or an analog match for the compound. There fo re , the compound 
i s d i v i d e d i n t o subcomponents wi th the norborny l group becoming the 
f i r s t subproblem. We can i n F igu re 5 observe AIMB e v a l u a t i n g the 
re levance o f a bromocamphor compound as an analog for the norbornyl 
group. Debug swi tches have been set to show i n t e r n a l s c o r i n g and 
c o n c l u s i o n s . T h i s s t r u c t u r e ends up s c o r i n g the b e s t . 

Now we t u r n to the s co r ing f u n c t i o n . The f u n c t i o n for 
e v a l u a t i n g the c loseness o f analogy i n v o l v e s a s e n s i t i v i t y parameter 
for the atom c l a s s , js, t imes the d i s s i m i l a r i t y parameter, d: 

Summation occurs over a l l atoms and a l l a t t r i b u t e s . There are three 
atom c l a s s e s : normal atoms, o r i g i n atoms (where components j o i n ) and 
dummy atoms ( p a r t i a l contex t o f ne ighbor ing component envi ronment) . 
A t t r i b u t e s i n c l u d e atom t y p e , bond type , s t e r eochemis t ry , e t c . For 
atom type d i s s i m i l a r i t y , there i s a s e r i e s o f atom analogy c l a s s e s o f 
v a r y i n g degree o f c l o s e n e s s . For example, i f atom types are e q u a l , d 
= 0 , i f a . and a . be long to { C l , B r , I ] ά = 3 , i f a. and a . be long to 
{F, B r , e l , 1} dP = 5 , and i f a . and a . are not members o f any analogy 
c l a s s e s then à = 10. Aromatic bondi are considered analogous to 
double bonds. S ince we are s t i l l e x p l o r i n g the analogy h e u r i s t i c s , 
we should take these on ly as examples o f the approach. Returning to 
our example, F i g u r e 6 shows the scores computed for two analogous 
b i c y c l o [ 2 . 2 . 1 ] h e p t a n e s . The bromo compound at 1500 i s b e t t e r than 
the dimer at 1540 (lower number i n d i c a t e s smal le r d i s s i m i l a r i t y ) . 
Note tha t AIMB recogn izes enantiomers and i s able to use a r e f l e c t i o n 
o f the model . In t h i s case the ca rbonyl i s on the wrong s i d e o f the 
mo lecu l e . 

The a c y c l i c component i s found i n two compounds (F igu re 6) one 
having an oxygen i n p lace o f the c e n t r a l carbon (540) , the other 
having a carbon (220) . In both cases the compounds have an aromatic 

ΝΑ M 

I Κ 
WHERE A e T A R G E T , A ' € A N A L O G , J = M A P ( l ) 
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Figure 4. Input on E&S PS330 of molecule to be modeled by AIMB. 
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Figure 6. D i s s i m i l a r i t y scores for analogies relevant to 
problem. The lower score i s the better analogy. 
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r i n g j o i n e d by one atom cha in to an a l i p h a t i c five-membered r i n g 
system. F i n a l l y for our example, AIMB assembles the components i n 
th ree -d imens ions . The e x p l a n a t i o n module i s under development, but 
the reasoning t r ace and q u a l i t y o f model e v a l u a t i o n i s implemented. 
In t h i s example the f i t o f the phenyl group to the cha in i s w i t h i n 
0^01 A , the f i t o f the norbornane s k e l e t o n to the cha in i s 0.11 
A ( t h i s r e f l e c t s the f ac t tha t the analogy for the c h a i n was 
connected to a l e s s cons t r a ined five-membered r i n g ) . The ac tua l 
accuracy o f the r e s u l t i n g model i s much b e t t e r than these va lues 
i n d i c a t e because the d i sc repancy i n f i t i s on l y an i n d i c a t i o n o f the 
s i m i l a r i t y o f the analogy and i s not incorpora ted i n t o the mode l ) . 
The c h a i n analogy comes from C r y s t . S t r u c t . Commun. 8, 553 (1979); 
norbornane s k e l e t o n from A c t a . C r y s t a l l o g r . Sect Β 31, 903 (1975) . 
The repor ted p r e c i s i o n o f the experiment for the c r y s t a l s t r u c t u r e s 
i s a l s o a v a i l a b l e . 

An ORTEP p l o t o f the A I M B - b u i l t model i s shown i n F igu re 7 . 
A l l i n g e r ' s molecular mechanics program MM2(18) was then used to 
r e f i n e the model cons t ruc ted by AIMB. S u p e r p o s i t i o n o f the AIMB 
model w i th t ha t r e f i n e d by MM2 i s shown i n F igu re 8. MM2 d i d not 
change the d i h e d r a l angles o f the b e n z y l group from those proposed by 
AIMB. L e t ' s r e c a l l tha t AIMB has no i n t e r n a l knowledge o f s t r u c t u r a l 
c h e m i s t r y , but on ly knows how to use ana log ies and a knowledge base 
of known models . AIMB does not c u r r e n t l y know about any k i n d o f 
non-bonded in t e r a tomic i n t e r a c t i o n s , yet AIMB b u i l t a c o r r e c t model 
of the example t a rge t compound because the knowledge o f i n t e r a c t i o n s 
and how to minimize them i s embedded i n the knowledge base o f known 
models. Thus AIMB b u i l t a minimum energy model ( v e r i f i e d s epa ra t e ly 
by MM2) yet AIMB d i d t h i s s y m b o l i c a l l y by reasoning ra ther than 
m i n i m i z a t i o n . 

Table I . Speed of b u i l d i n g model o f 7-benzyl-2-norbornanone 

Method Time (seconds) 

AIMB 40 
Human be ing 118 
PRXBLD 644 
MM2 4436 

Severa l s i g n i f i c a n t p o i n t s can now be made. F i r s t as Table I shows, 
on the VAX 11/750, AIMB took o n l y 40 seconds to c o n s t r u c t the model . 
A chemist took 145 seconds to assemble a F i e s e r model o f the compound 
and when completed, the chemist d i d not know the d i h e d r a l angles o f 
the b e n z y l group. PRXBLD took 644 seconds to b u i l d the model . T h i s 
molecule i s d i f f i c u l t for PRXBLD because adjustment o f the cha in 
angles r e q u i r e s movement o f the two l a r g e groups o f atoms, but PRXBLD 
does not recognize tha t the groups can be moved as a u n i t . 
A l l i n g e r ' s MM2 took 4436 seconds to converge to the de fau l t CHEMLAB 
c r i t e r i a and tha t was when g iven a very good input s t r u c t u r e (PRXBLD 
model) . 
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Figure 7. ORTEP plot of f i n a l AIMB model of target molecule. 

Figure 8. Superposition of AIMB model and result of MM2 
refinement. 
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Conclusion 

We have shown tha t analogy and i n t e l l i g e n c e app l i ed to model b u i l d i n g 
l eads to a f a s t , accurate a l g o r i t h m . Using p r i o r knowledge i s 
e f f i c i e n t . T h i s method i s a p p l i c a b l e to complex f u n c t i o n a l i t y where 
the fo rces or i n t e r a c t i o n s may not be w e l l unders tood, e . g . , 
i n o r g a n i c s and o r g a n o m e t a l l i c s , but where there are many known 
c r y s t a l s t r u c t u r e s . While we based our knowledge on c r y s t a l d a t a , 
one cou ld a l so use computed s t r u c t u r e s s epa ra t e ly or i n con junc t ion 
wi th c r y s t a l d a t a . The process we desc r ibed i s easy for any chemist 
to unders tand. AIMB does not i n v o l v e fo rce f i e l d s or compl ica ted 
mathematics. The models AIMB generates are supported by exper imenta l 
data and h i g h l y j u s t i f i e d . F i n a l l y , w h i l e energy m i n i m i z a t i o n 
methods inc rease i n t ime e x p o n e n t i a l l y as the number o f atoms i n the 
problem i n c r e a s e , the AIMB a lgo r i t hm increase i n t ime i s l i n e a r w i th 
i n c r e a s i n g numbers o f atoms. 

Al though AIMB i s a working p ro to type , we have many ques t ions 
remaining to be answered. We would l i k e to exp lore the d e t a i l e d 
h e u r i s t i c s and study the e f f e c t o f changing these on the f i n a l models 
c o n s t r u c t e d . We are i n t e r e s t e d i n seeing how the s i z e o f the 
knowledge base i s r e l a t e d to the q u a l i t y o f r e s u l t s and speed o f 
o p e r a t i o n . F i n a l l y , we would l i k e to exp lore i t s a p p l i c a t i o n i n 
areas where conven t iona l methods s imply can not be used. 
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13 
Computer-Assisted Drug Receptor Mapping Analysis 

Teri E. Klein1, Conrad Huang1, Thomas E. Ferrin1, Robert Langridge1, and 
Corwin Hansen2 

1Computer Graphics Laboratory, University of California, San Francisco, CA 94143 
2Department of Chemistry, Pomona College, Claremont, CA 91711 

KARMA is an interactive computer assisted drug design tool that incorporates 
quantitative structure-activity relationships (QSAR), conformational analysis, 
and three-dimensional graphics. It represents a novel approach to receptor map
ping analysis when the x-ray structure of the receptor site is not known, KARMA 
utilizes real time interactive three-dimensional color computer graphics com
bined with numerical computations and symbolic manipulation techniques from 
the field of artificial intelligence. 

Many problems in chemistry may benefit from developments in the field of Artificial Intelligence 
(AI), particularly the area now known as knowledge engineering. Knowledge can be described as 
that which includes both empirical material and that "which is derived by inference or interpreta
tion". (1) It may consist of descriptions, relationships, and procedures in some domain of interest 
(2) We are now incorporating methods from knowledge engineering research in computer assisted 
drug design. 

Molecular modeling with interactive color computer graphics in real time is a powerful 
method for studying molecular structures and their interactions. Display and manipulation of 
computer generated skeletal and surface models provide efficient methods for the chemist to 
examine steric interactions of many ligands with the binding sites in their receptors. We have 
combined x-ray crystallographic results, quantitative structure-activity relationships (QSAR), and 
interactive three-dimensional graphics in earlier attempts to design better ligands for enzyme bind
ing. (3,4) We are applying knowledge engineering techniques provided by the software KEE 
(Knowledge Engineering Environment (5) ) to the development of rational drug design methods 
without having x-ray crystallographic results in hand. 

Our integrated system, KARMA, KEE Assisted Receptor Mapping Analysis, uses knowledge 
sources, including QSAR and conformational analysis, in a rule-based system to create an anno
tated visualization of the receptor site. This is then used in an iterative manner to guide the inves
tigator in generating rules, hypotheses, and new candidate structures for drug design. This 
approach to receptor mapping and drug design differs from the traditional approach used by 
chemists in two significant ways. Classically, in computerized drug design, one superimposes a 
set of structurally related molecules (congeners) so that their bioactive functional groups coincide, 
yielding a pharmacophore. A surface is then derived based on the composite molecule supposedly 
yielding a complementary shape of the receptor. (6) This approach has met with limited success 
because compounds that act as substrates or inhibitors of certain receptors do not necessarily bind 
similarly. It is our belief that the commonality of the binding mode must be established. The 
other shortcoming of the traditional approach is that it provides little information on the qualitative 
character of the enzyme surface. The classical lock and key concept of ligand-receptor 

0097-6156/86/0306-O147$06.00/0 
© 1986 American Chemical Society 

American Chemical Society 
Library 

1155 16th St.f N.W. 
Washington, D.C. 20036 
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148 ARTIFICIAL INTELLIGENCE APPLICATIONS IN CHEMISTRY 

emphasizes structural geometry and may neglect the importance of interactions such as hydropho-
bicity. Processing of the binding data using QSAR prior to receptor mapping analysis yields 
information not only about the hydrophobic and polar nature of the surface model, but also about 
the steric and electronic properties of the data. (7) 

System Design 
KARMA is a set of programs residing on several machines connected by a high bandwidth network 
(see Figures 1 and 2). The main program resides on the Lisp machine and controls all processing. 
The controlling program on the Lisp machine is implemented on top of KEE which embodies many 
knowledge engineering techniques. KEE provides a set of software tools that allows for very rapid 
software prototyping, evaluation, debugging, and modification. Specifically, KARMA takes advan
tage of KEE*s capabilities that include frame based knowledge representation with inheritance, a 
rule-based inference system, a graphical interface for debugging and displaying knowledge bases, 
and a flexible interface that allows for the integration of outside methods. (5) 

Input to the controlling program consists of congener sets and their related QSAR equa
tions. A satellite program, based on the Pomona MedChem Software SMILES (Simplified Molec
ular Input Line Editor System) is used for input of the structures. (8) SMILES creats a unique 
identifying code for each chemical structure which is useful for searching for structures and phy-
siochemical parameters, and minimizing duplication of structural information. These structures 
are passed to satellite programs, including distance geometry (9) and energy minimization (10), to 
generate multiple conformations that are then displayed so that users may select those of interest 
These structures, which constitute the basis set, are used to define the receptor model. 

The receptor model is represented graphically by a set of surfaces. These surfaces are 
defined by a set of control points which are calculated on the compute server. Control points, 
which are based on minimized structures, are then manipulated by KARMA's rules system. These 
rules provide detail to the receptor surface model. During this process, KEE provides a graphical 
interface showing which rules and derivations are being accepted as true. The user can also 
interact with KARMA's rule system during this time. The surface model is displayed using the con
trol points to form bicubic patches on the graphics workstation. The user can then manipulate the 
surface as well as modify the structure. These modifications are sent back to the controlling pro
gram for refinement by the rules. This iterative process continues until the user is satisfied with 
KARMA's results. 

As seen in Figure 1, our hardware is connected by an Ethernet (11) The control server is a 
Symbolics 3600 Lisp Machine and the compute server is a DEC VAX 8600. The three dimen
sional graphics workstations include the Silicon Graphics IRIS 2400 and the Evans and Sutherland 
PS350. Electronic communication with collaborating scientists at other institutions is available 
through the VAX 750 via several networks including the ARPAnet and CSnet 

System Implementation 
Input to the controlling program is achieved through a series of "pop-up" menus in the Karma 
Window (see Figure 3a). For example, if the user is interested in entering a set of congeners, the 
user would select the molecule editor, KARMA will then display the molecule editor layout in the 
current window. Users can then enter the chemical structures selecting structure from the 
molecule editor menu (see Figure 3b). Structures are currently entered using the tree structure of 
SMILES (see Figure 3c). (The molecule editor will be expanded to allow for graphical input in 
the future.) KARMA then displays the two-dimensional structure for user verification (see Figure 
3d). Coordinates for the three-dimensional structures are saved in a knowledge base in KEE. The 
three-dimensional structures are based on x-ray crystallographic data, standard bond angles, and 
bond lengths. All congener data, including physiochemical parameters such as log Ρ or MR (cal
culated or experimental), can easily be entered and revised in the molecule editor (see Figure 4). 

Three-dimensional coordinates for the congener set are passed to the distance geometry and 
minimization programs. These satellite programs provide efficient methods for searching confor
mational space. Distance geometry programs includes subroutines for controlling ring planarity of 
aromatic rings and orientation of the molecules based on a common group of atoms. (12) 
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Figure 1. Hardware Configuration. 
Copyright © 1985, Regents of the University of California/Computer Graphics Lab. 
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Figure 2. System Architecture. 
Copyright © 1985, Regents of the University of California/Computer Graphics Lab. 
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Karma Window 

Editors 
Molecule 
Equation 
Rule 
Graphics 

(a) 

Molecule Editor 

Structure 

c 1 ccccc 1 Cc2c(N )nc(N)nc2 

(c) 

Molecule Editor 

Edit 
Structure 
Parameters 
Name 
Parent 

(b) 

Molecule Editor 

ΝΗ2 

NH2 

SMILES: clccccclCc2c(N)nc(N)nc2 
Name: 

(d) 

Figure 3. Editing Sample. 
Copyright © 1985, Regents of the University of California/Computer Graphics Lab. 
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Revise 
Save 
Abort 

NH2 

N NH2 

Parent: 

log Ρ = 1.58 
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π = 0.000 

SMILES: clccccclCc2c(N)nc(N)nc2 
Name: 

Figure 4. Editing Sample (continued). 
Copyright © 1985, Regents of the University of California/Computer Graphics Lab. 
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The output of the distance geometry and minimization programs is passed to the graphics 
program EDGE (Easy Distance Geometry Editor). The structures are displayed three-
dimensionally so users may select structures to represent conformational space. Models are easily 
selected pointing at the desired structure (see Figure 5). X, Y, and Ζ rotations and translations, 
depth cueing, color, and labeling have been incorporated in EDGE, EDGE also provides a RMS 
matching routine for Ν arbitrary atoms designated by the user. The selected models are then used 
for surface generation. 

Surface generation is based on a set of points derived from the outcome of distance 
geometry programs applied to the basis set of structures. The basis set of points, P, is defined as: 

where Pi is the uniformly distributed set of points over a sphere corresponding to atom i, and, 
g (PiPj) is the overlap of the two sets of points. The density of points/angstrom2 can be arbi
trarily set by the user. If the density is relatively high, a large number of bicubic patches with 
small area are generated; to address each bicubic patch at a high density would be time-consuming 
and difficult at best If the density of points is low, the patches become too large and don't yield 
enough detailed information about the surface model. 

The control points are defined by the basis set of points P. These control points define the 
parametric bicubic patches which form the surface model. Advantages of the parametric bicubic 
surface include continuity of position, slope, and curvature at the points where two patches meet 
All the points on a bicubic surface are defined by cubic equations of two parameters s and /, where 
s and t vary from 0 to 1. The equation for x(s,t) is: 

x(s ,f ) = a u s 3 * 3 + a \2S2t2 4- a \-$sh + α χ ^ 3 

+ ct2\s2t7> + a22S2t2 + <i2zs2t +α24β2 

+ a ̂ \st3 + a yist2 + a y$st + a 345 

+ <Ζ4ΐί 3 + α42Γ 2+<243ί + Û44 

Equations for y and ζ are similar. (13) Either cardinal spline or B-spline bicubic patches can be 
used as they differ only by the starting coefficients. (14) Overlapping sets of control points allow 
for the joining of patches. Sixteen points define a bicubic patch. To determine which points 
define which patches, an initial triangle is formed from three nearest neighbors. The next triangle 
shares one side of the initial triangle and is connected to its next nearest neighbor. This process is 
continued iteratively until all points are accounted for. The internal edge of two triangles is then 
dropped to form a quadrilateral. Each internal edge is used only once. Nine quadrilaterals define a 
single patch. These patches are combined to form the surface model and are manipulated by both 
KARMA's rule system and the investigator at the graphics station. 

System Core 
The information contained in KARMA's knowledge bases is based upon quantitative structure-
activity relationships (QSAR), kinetic data, and structural chemistry. The combination of QSAR 
and kinetic data allows for the study of enzyme-ligand interactions. The Hansen approach to 
QSAR, based on a set of congeners, states: 

Biological Activity = f(physiochemical parameters) 
Physiochemical parameters are used to model the effects of structural changes on the electronic, 
hydrophobic, and steric effects for organic molecules. (15) Examples of physiochemical parame
ters include, among others: 
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σ, an electronic constant based on the Hammett equation for the ionization of substituted 
benzoic acids; 
π, the hydrophobic parameter for a chemical substituent based on the octanol-water par
tition coefficient log P; 
MR, the molar refractivity, which parameterizes polarizability and steric effects; and 
Verloop's parameters, which are steric substituent values calculated from bond angles 
and distances. 

Using multivariable linear regression, a set of equations can be derived from the parameterized 
data. Statistical analysis yields the "best" equations to fit the empirical data. This mathematical 
model forms a basis to correlate the biological activity to the chemical structures. 

K A R M A describes the interactions for enzyme-ligand binding using QSAR equations and 
parameters, and the structural information of the congener data. These interactions, with illustra
tive examples, are shown below: 

Interaction Example 

enzyme -> specific enzyme 
congener -> specific enzyme 
congener -> specific congener 
substituents -» specific congener 
equations -> congeners 
variable -> substituents 
specific enzyme —» specific enzyme 

*DHFR - Dihydrofolate Reductase 
"inhibitors - triazines, benzylpyrimidines, etc. 

The data used for the above interactions is contained in KARMA's knowledge bases, Chem-
Data and KarmaData. These knowledge bases contain information about classes of objects or 
about the objects themselves. Objects and their attributes are represented as individual 
"knowledge frames" which are linked together to form a hierarchal structure. Consistency 
among the objects in both knowledge bases is obtained through inheritance rules. 

ChemData is one of several data bases available in K A R M A . This data base contains chemi
cal information pertaining to chemical elements and molecular substituents. Elemental data 
includes atom type, atomic radii, hybridization, molecular weight, etc. Substituent data consists of 
unique identifying codes, physiochemical parameter data, and x-ray crystallographic data. For 
each substituent, where known, there are values for the hydrophobic parameter, i.e., π, an elec
tronic parameter, i.e., σ, and a steric parameter, i.e., MR. The associated x-ray crystallographic 
data is used for building the small molecules in the congener set This data is also used for speci
fying constraints used in the distance geometry calculations. 

KarmaData contains information which the user enters, e.g., QSAR equations, congener set, 
as well as information about previously studied enzyme-ligand binding complexes. KarmaData 
contains several classes and subclasses. For example, in KarmaData, there is a class called pro
teins, a subclass in proteins called dehydrogenase, a particular member of dehydrogenase called 
DHFR, and a specific instance of DHFR called chicken (vide infra). Chicken DHFR contains 
those attributes which are specific to itself, and inherits properties from units DHFR, dehydro
genase, and proteins. 

(DHFR* -> chicken DHFR) 
(benzylpyrimidines -> chicken DHFR) 
(inhibitors** -> benzylpyrimidines) 
(3,4,5 OMe -> benzylpyrimidines) 
(equation -> benzylpyrimidines) 
(4-Cl->4-Br) 
(chicken DHFR -» L. casei DHFR) 
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CAC 

• E.coli 
Proteins 

DHFR «- L.casei 
Ν 

ADH Χ 
>> Chicken 

KEE provides many different mechanisms for inheritance. KEE has the ability to constrain the type 
and number of values assigned to attributes for consistency and description in the knowledge base. 
© 

Currently, KARMA's rules are formulated in an if-then format. A rule may have multiple 
conditions, conclusions, and actions, KARMA takes advantage of both the forward and backward 
chainers for derivation of the three-dimensional receptor model. For example, two types of rules, 
generic and specific, can be defined empirically from the results of QSAR as well as from molecu
lar structure. 

Generic rules are based on the QSAR equations and their coefficients. Forward chaining 
using these rules yields basic characteristics for the receptor site model. For instance, an 
abstracted generic rule may take the form: 

If the coefficient of the hydrophobic parameter is approximately equal to one, then ex
pect complete desolvation about substituent X of the ligand. 

This rule was derived empirically from some recent work on several species of alcohol dehydro
genase (ADH). (16) The following equations were found: 

Compounds Enzyme Equations 

Horse ADH log 1/K. = 0.89 log Ρ + 3.56 
n= 11, r = 0.960, s = 0.197 

^ N H 2

 H o r s e log 1/K. = 0.98 log Ρ - 0.83 σ + 3.69 
Τ 2 η =14, r = 0.937, s = 0.280 

Χ Human ADH log 1/K. = 0.87 log Ρ - 2 . 0 6 0 ^ 
η =13,^ = 0.977, s = 0.303 

-4.60 

W 
Ν NH 

Rat ADH 

Horse ADH 

log 1/K. = 1.22 log Ρ - 1.80 o m e t a + 4.87 
n= 14,^=0.985, s = 0.316 

log 1/K. = 0.96 log?+ 5.70 
n = 5, r = 0.990, s = 0.207 

where X is the substituent and log Ρ is based on the octanol-water partition. 
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The average of the coefficients of the hydrophobic term is approximately equal to one (average = 
0.97) suggesting complete desolvation about substituent X. Figure 6 shows complete desolvation 
by the enzyme ADH (hydrophobic space - red; polar space - blue) around substituent X of the 
pyrazole (green). 

Another example of a rule dealing with hydrophobicity may take the form: 
If the coefficient of the hydrophobic parameter is greater than 0.5 and less than 1.0, then 
expect a concave surface about substituent X of the ligand. 

This type of rule is empirically based on the enzyme-ligand binding such as that of carbonic anhy-
drase c (CAC) and sulfonamides. (4) The following equation was found: 

Compound Equation 

log Κ = 1.55 σ + 0.64 log Ρ - 2.07^ - 3.28I2 + 6.94 
η = 29, r = 0.993, s = 0.190 

Figure 7 shows how the solvent accessible surface of the enzyme CAC (hydrophobic space - red; 
polar space - blue) is slighdy concave about the substituent X of the sulfonamide (green). Similar 
rules exist for the coefficients which describe other aspects of hydrophobicity, as well as polar 
space, which help define the basic shape, i.e., cleft or hole, of the surface receptor model. 

Specific rules are based on the attributes of congeners, including the physiochemical param
eters used to determine the QSAR equation, the biological activity, and the molecular structure. 
Backward chaining, using these rules with specific instances of substituents, yields detailed shape 
and character for the receptor model. For instance, an abstracted specific rule may take the form: 

If the biological activity of compound y is less in enzyme A than that of related enzyme 
B, expect possible steric hindrance about substituent X. 

One possible interpretation of this type of rule is the enzyme ligand binding of trimethoprim with 
bacterial DHFR and chicken liver DHFR. (17,18) 

DHFR Species Binding Affinity (log 1/K.) 

L. casei 8.87 
E. coli 6.88 
chicken 3.98 

This data shows a noticeable drop in binding affinity for trimethoprim and chicken liver DHFR. 
Figure 8 illustrates steric interaction between the 5-OMe of trimethoprim (green) with the 
sidechain of Tyr 31 of native chicken liver DHFR (red). There is no steric interaction seen 
between the 5-OMe of trimethoprim (green) and the sidechain of Phe 30 of L. casei DHFR (red). 
(Right view: chicken liver DHFR; Left View: L. casei DHFR) It is known from x-ray crystallo
graphic results that the sidechain of Tyr 31 of chicken liver DHFR rotates to accommodate 
trimethoprim. (18) 

A specific rule can also be based upon comparisons of bond lengths and van der Waals 
radii, and biological activities. For instance, 

If the biological activity of substituent X2 is less than the biological activity of substi
tuent Xr and, X 2 is atomically larger than Xp then expect possible steric hindrance with 
the receptor wall about X 2, provided that other factors are equal. 

This rule can be exemplified by two compounds that differ by the type of the substituent, i.e., a 
chlorine and a bromine atom. If the binding affinity for the bromine compound was lower (and 
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Figure 5. Output of EDGE. 
Copyright © 1985, Regents of the University of California/Computer Graphics Lab. 

Figure 6. Enzyme-ligand Complex for Alcohol Dehydrogenase and a substituted pyrazole. 
Copyright © 1985, Regents of the University of California/Computer Graphics Lab. 
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Figure 7. Enzyme-ligand Complex for Carbonic Anhydrase C and a substituted sulfonamide. 
Copyright © 1985, Regents of the University of California/Computer Graphics Lab. 

Figure 8. Enzyme-ligand Complex for Dihydrofolate Reductase and trimethoprim. 
(L. casei: left, chicken liver: right). 
Copyright © 1985, Regents of the University of California/Computer Graphics Lab. 
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possibly even lower for the iodine compound), it would suggest that the wall of the receptor model 
is contacted by the ligand at the bond distance of the chlorine atom and its related van der Waals 
radius. Therefore, one could assume that the larger bromine atom represents an intrusion into the 
receptor wall. 

The above examples used to illustrate the specific rules for backward chaining are similar to 
other attempts at receptor mapping. (6) However, these other methods do not account for interac
tions that may be based on a combination of effects such as hydrophobicity and ligand potency. 
For instance, a rule that might apply to a compound with a substituted phenyl ring may take the 
form (19) 

If a meta disubstituted compound is symmetrical, and the biological activities differ 
between hydrophobic and polar substituents, then expect possible ring rotation to max
imize hydrophobic and polar interactions between the ring substituents and the hydro
phobic and polar surface. 

Many rules can be derived from the molecular structures and biological activities as seen from the 
above examples, which add both shape and character to the surface model. 

Graphics Interface 
KARMA presents the results from the rule system on a three-dimensional graphics workstation. 
The bicubic patches of the surface model are displayed graphically and may be manipulated by 
the user. The user may also modify the model and return to the control server for another iteration 
in the rule system if the results are not satisfactory. 

The bicubic patches are characterized with different colors, intensities and line textures to 
show attributes such as hydrophobicity and steric properties. Only one attribute may be displayed 
at a time, with color and intensity representing the value of the attribute, and line texture 
representing KARMA*s confidence level in the information. For example, when displaying hydro
phobicity, red patches are hydrophobic space while blue patches are polar space. Patches drawn 
with solid lines represent areas which are well explored while patches with short dashes contain 
little information. Displaying information using multiple cues allows the user to examine various 
aspects of the surface model without having to deal with large amounts of numerical data. 

The graphics interface is also the appropriate place to alter the model since it lets the user 
look at an overall picture of the model as it is modified. The graphics interface provides user-
friendly tools for this purpose, including a pointing device for selecting the modification site and a 
hierarchical menu system to guide the user through the actual process of making changes. Thus, 
the user may select a control point on one of the bicubic patches with the pointing device; pop up 
a menu of permitted modifications; select an operation, e.g., move the control point outwards 
along the surface normal. After the control point data has been modified, the graphics interface 
will recalculate and redraw the bicubic patches of the surface model based on the new data. After 
modifying the model to the desired state, the user may simply return to the control server and ini
tiate the rule system for further refinement 

Conclusion 
Currently, KARMA is in the prototyping phase. Although the hardware is connected via the high 
bandwidth network, it is necessary to implement the servers for data communications. Addition
ally, a completely new graphics package is in development for KARMA. The next two steps in 
terms of development are the turnkey and production versions of KARMA. 

Current methods in computer-assisted drug design are most successful if the structure of the 
receptor is known. Our goal is to aid the investigator in those situations where the structure of the 
receptor may or may not be known, KARMA emphasizes two critical factors. First, three dimen
sional graphics presents the results from the rule-based system in a manageable format. Second, 
KARMA provides a means for the user to inject knowledge about the model, KARMA is designed as 
a tool to aid the chemist and the ability to incorporate ideas from the user is a very important 
aspect It is our goal to successfully look at computer assisted drug design from a new perspective 
using KARMA. 
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14 
An Intelligent Sketch Pad as Input 
to Molecular Structure Programs 

Carl Trindle 

Chemistry Department, University of Virginia, Charlottesville, VA 22901 

The programming and manipulation of chemical graphs is 
awkward in most familiar programming languages. LISP, 
the Esperanto of artificial intelligence research, 
makes possible a representation of chemical structural 
formulas which is much more nearly analogous to the 
chemist's view of such graphs. This is a considerable 
computational advantage as well as a convenience for 
the user. 
We have designed a "functional fragment" representation 
of structural formulas, applicable to any molecule, 
which will resolve a crude sketch of a chemical struc
ture into a list of fundamental fragments. Exploiting 
the PROPERTY feature of LISP and the distance geometry 
algorithms of Crippen we can recover Cartesian coordi
nates for each atom, suitable for input to molecular 
mechanics programs, or to ab i n i t i o electronic struc
ture packages. 
Besides local geometries, the intelligent sketchpad 
can contain any local properties, including bond types 
and strengths, chromophore optical spectra, and nuclear 
magnetic resonance and infrared spectra characteristic 
of a local chemical environment. 

Computational chemists have developed several remarkably powerful 
and r e l i a b l e computer codes, capable of describing the re l a t i v e 
s t a b i l i t y of various conformations of macromolecules, and details 
of the electronic structure of molecules of more modest size (1). 
The properties of molecules which can be obtained by use of these 
programs correlate with important features of chemical r e a c t i v i t y 
and the properties of materials. Molecular design, i n pharma
ceuticals, photochemistry, and general materials science can be 
made much more e f f i c i e n t by the routine use of these computational 
systems. However, their use i s at present not widespread; i t i s 
limited to a few large chemical companies. 

0097-6156/86/0306-0159$06.00/0 
© 1986 American Chemical Society 
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One of the obstacles to wider use of the well-tested and power
f u l programs such as Allinger's molecular mechanics (2) and Pople's 
GAUSS80 (3) i s that the programs require such elaborate and awkward 
input. Users must ordinarily prepare a l i s t of Cartesian coordi
nates of each atom. This i s cumbersome for molecules of even 
moderate size. But more s i g n i f i c a n t l y , chemists 1 powerful sense of 
three-dimensional molecular structure i s never expressed i n Cartesian 
coordinates. Instead chemists think more naturally of "internal 
coordinates," that i s bond lengths, primary valence angles, and l o c a l 
dihedral angles. Of course a f u l l set of internal coordinates de
fines i n principle the set of Cartesian coordinates (4). Unfortu
nately, the usual algorithms for generating Cartesian coordinates 
from internal coordinates are sensitive to small errors. These 
errors accumulate and can perpetrate enormities such as leaving 
rings unclosed, or forcing u n r e a l i s t i c a l l y short separations be
tween nonbonded atoms. In the chemist's conceptual picture, 
r e a l i s t i c bond distances for rings are maintained, even i f distor
tions i n normal valence angles are required. 

The problem i s to transform the p i c t o r i a l view of molecules 
which i s the daily companion of the chemist, to the numerical form 
required by programs, WITHOUT FORCING THE USER TO EFFECT THE TRANS
LATION. We must not ask the chemist to do much more than identify 
the atoms, their connectivity, and some gross features of the 
stereochemistry. The structural formula i s the medium by which such 
simple yet r i c h l y evocative information i s conveyed. The structural 
formula does after a l l suffice for the chemist's work day to day. 
It should be adequate to convey the essential information to useful 
computer programs. 

There w i l l be two major stages to the translation of information 
from the chemist's p i c t o r i a l image to the r i g i d l y formatted input 
f i l e required by molecular mechanics or molecular o r b i t a l programs. 
F i r s t the sketch i s impressed on a d i g i t i z i n g tablet (perhaps as 
simple as a Koala Pad (R), or a more accurate d i g i t i z i n g tablet). 
Then the graph must be interpreted and a t r i a l geometry generated. 

Accepting the Sketch. The (computationally) most convenient way to 
enter a structural diagram i s to use a d i g i t i z i n g tablet with a mouse 
or stylus. Our experience has been with the Houston Instruments 
HIPAD (R). The software accompanying this (and most ordinary) 
d i g i t i z i n g tablet accepts and stores l o c a l coordinates of particular 
points, and a set of pointers designating which vertices are to be 
connected (5). In this way the molecular topology can be specified 
with no novel analysis or programming. 

I t would be more interesting from the point of view of A r t i 
f i c i a l Intelligence research to interpret a sketch already on paper, 
by the analysis of dark and l i g h t elements (6). We have made only 
small progress i n this task, but some preliminary remarks can make 
the d i f f i c u l t i e s clear. The f i e l d of view i s resolved into picture 
elements, and an op t i c a l scanner would assign a numerical value 
corresponding to the darkness of the sketch at that location. 
Heavy lines would be easy to recognize, by the sequence of adjacent 
dark spots detected by the scanner. Intersections might be harder 
to recognize i f the grid i s coarse, but knowledge of the existence 
of lines could guide the search, by estimates of the intersections 
by extrapolation. A planar graph (with no crossing lines) would 
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seem to present few d i f f i c u l t i e s . V e r t i c e s representing generalized 
atoms (that i s , "Me" i n place of a f u l l y d e t a i l e d methyl group) 
would have to be more c a r e f u l l y s p e c i f i e d . The chemist would use 
B e r z e l i u s - n o t a t i o n c a p i t a l l e t t e r s f o r l a b e l s , which would have to 
be i n t e r p r e t e d . This i s a hard task, as the post o f f i c e has learned. 
I t would be e s s e n t i a l f o r the system to r e a l i z e when i d e n t i f i c a t i o n 
of a vertex i s impossible or ambiguous, and request guidance from 
the user. Figure 1 shows how v e r t i c e s are s p e c i f i e d . 

I t w i l l be necessary to d i s t i n g u i s h the strokes which i d e n t i f y 
s i n g l e or m u l t i p l e bonds from the strokes denoting lone p a i r s , and 
i t w i l l be required to supply missing hydrogens and lone p a i r s 
which are often omitted from casual sketches. This l a t t e r problem 
w i l l a l s o be encountered i f the sketch i s input d i r e c t l y by the 
d i g i t i z i n g t a b l e t . We return to that l i n e of approach. 

Preliminary Processing of the Sketch. Even at t h i s e a r l y stage, 
before d i f f e r e n t atoms are d i s t i n g u i s h e d and hydrogens are f u l l y 
expressed, we have much of the information needed f o r some kinds of 
a n a l y s i s . A l l of the graph-theoretic a n a l y s i s of p i systems ( 7 ) , 
which may be considered to be based on the Huckel model, uses no 
more than the c o n n e c t i v i t y between equivalent centers. However 
powerful the graph theory has been, i t cannot be denied that i t 
suppresses much of the d e t a i l expressed i n the s t r u c t u r a l diagram. 
Therefore we w i l l not be content to stop at t h i s stage. 

I t w i l l be necessary at minimum to define the type of atom 
present at each vertex. We reduce the labor necessary f o r t h i s 
s p e c i f i c a t i o n by (a) suppressing hydrogens i n the preliminary 
sketch; and (b) assuming as a d e f a u l t that each vertex represents 
a carbon atom, r e q u i r i n g an amendment only f o r heavy atoms. Our 
software i s responsible f o r f i l l i n g i n hydrogens. This process 
i s frequently ambiguous, given only the skeleton of heavy atoms. 
Therefore the computer system w i l l sometimes i n t e r r o g a t e the user 
f o r the number of hydrogen atoms at each vertex. With t h i s i n f o r 
mation the task of completing a Lewis s t r u c t u r e i s l e f t to the 
software, which i s at l e a s t as capable of t h i s task as the average 
f i r s t - y e a r student. This i s the f i r s t task that requires anything 
resembling A r t i f i c i a l I n t e l l i g e n c e , so a few remarks on the design 
may not be out of place. 

A Routine to Assign Lewis Structures. The procedure f o r assigning 
Lewis s t r u c t u r e s i s f a m i l i a r ( 8 ) . Given the set of atoms, one must 
sum the valence e l e c t r o n s . In our LISP system, each ATOM can be 
assigned PROPERTIES which may include the number of valence e l e c 
trons i t contributes to the molecule, and equally important, i t s 
set of NEIGHBORS by which the skeleton of the molecule i s s p e c i f i e d . 
Each such l i n k i s assigned a p a i r of valence e l e c t r o n s , and a census 
i s kept of e l e c t r o n p a i r s i n the v i c i n i t y of each atom. Among the 
PROPERTIES of each atom i s an estimate of i t s e l e c t r o n e g a t i v i t y , 
and the program assigns e l e c t r o n p a i r s to f i l l o ctets using the 
e l e c t r o n e g a t i v i t y to set p r i o r i t y . The l a s t step i s most " d i f f i 
c u l t . " For each of those atoms which lack a f u l l o c t e t , the system 
must look among the NEIGHBORS f o r atom(s) possessing a lone p a i r 
which i t might share. Of a l l those p o t e n t i a l donors, one chooses 
the atom with the most negative formal charge. The m u l t i p l e bond 
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ARTIFICIAL INTELLIGENCE APPLICATIONS IN CHEMISTRY 

A D i a l o g u e Accompanying t h e E n t r y 
o f a M o l e c u l e o f Moderate C o m p l e x i t y 

SPECIFY NON-CARBON VERTICES: 

NUMBER : 1 
NUMBER: 8 
NUMBER: 10 
NUMBER: 12 
NUMBER: 0 

TYPE: n i t r o g e n 
TYPE: oxygen 
TYPE: oxygen 
TYPE: oxygen 

SPECIFY NET CHARGE: *1 

HYDROGENS AT 
HYDROGENS AT 
HYDROGENS AT 
HYDROGENS AT 
HYDROGENS AT 
HYDROGENS AT 
HYDROGENS AT 
HYDROGENS AT 
HYDROGENS AT 
HYDROGENS AT 
HYDROGENS AT 

VERTEX 
VERTEX 
VERTEX 
VERTEX 
VERTEX 
VERTEX 
VERTEX 8 
VERTEX 9 
VERTEX 
VERTEX 12 
VERTEX 13 

11 : 

F i g u r e 1. A l l v e r t i c e s are f i r s t assumed to be CARBON. The 
system requests tha t the user s p e c i f y non-CARBON v e r t i c e s ; i t 
w i l l b u i l d a se t of u s e r ' s a b b r e v i a t i o n s . 
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14. TRINDLE An Intelligent Sketch Pad for Molecular Structure Programs 

i s represented by the appearance of the donor several times i n the 
(revised) NEIGHBOR l i s t . When the Lewis structure routine finds an 
ambiguity which we would represent by a set of resonance structures, 
i t reports that fact and chooses the f i r s t legal structure for 
further processing. Figure 2 shows the procedure i n practice. 

Representation of the Molecule i n LISP. We have used the chemist's 
sketch, or i t s Lewis structure equivalent, as the model of a data 
structure i n LISP (9). This language has the f l e x i b i l i t y needed 
to express an essentially non-numerical object, i n terms of l i s t s . 
LISP w i l l permit us to organize molecular structure information i n 
a way that mimics the human expert's knowledge. To accomplish this 
representation, we must develop a clear idea how the chemist assimi
lates the information provided d i r e c t l y and e x p l i c i t l y by the sketch, 
and how the properties of the molecule are recalled to the chemist's 
awareness. 

The structural formula at minimum id e n t i f i e s the atoms and 
their connectivity. This hardly seems to be adequate i n complexity 
to express much molecular information. This apparent paradox i s 
resolved when we recognize that the chemist brings much of his ex
perience to the task of interpreting the sketch, and much of the 
information i s evoked rather than transmitted by means of the struc
tur a l formula. The atoms' names—carbon, n i t r o g e n — c a l l up a flood 
of associations which (although they are almost never written ex
p l i c i t l y i n the chemist's sketch) are nonetheless part of the 
information i t can summon. Among this data are the atomic mass, 
typic a l valencies, l o c a l geometry, perhaps a van der Waals radius, 
and a guide to chemical behavior, i t s "electronegativity." 

The connectivity can define some aspects of the geometry i n a 
useful semiquantitative way. The chemist has a very r e l i a b l e idea 
of the range of bond lengths; CC(single), 1.54 A; CC(double), 1.33 A, 
etc. By counting connections and recognizing the atoms being con
nected, one can assign good estimates of the distances between 
dir e c t l y bonded atoms. 

The chemist's knowledge of molecular geometry extends beyond 
typic a l values of bond distances. He w i l l also be able to predict 
many bond angles f a i r l y accurately. This i s equivalent to speci
fying a 1-3 nonbonded interatomic distance. The chemist's sketch 
portrays cis and trans isomerization, syn and a n t i , and gauche 
conformations which specify either torsion angles, or i n d i r e c t l y , 
a 1-4 nonbonded distance. 

Besides primary bond distances and angles, and some special 
cases of torsional and dihedral angles, the chemist knows more global 
features of molecular geometry. However, such knowledge becomes more 
and more fragmentary; the longest distances i n a molecule are most 
poorly defined. 

A LISP Structural Recognizer. A molecule i s represented i n our LISP 
program f i r s t as a l i s t of atoms. A numbering scheme assigns an 
unique label to each atom. Each atom has a collection of PROPERTIES; 
foremost among them i s i t s generic NAME. The name CARBON carries 
with i t a van der Waals RADIUS and a VALENCE. Other properties can 
be added as desired. 

The major feature of a molecular sketch i s the topology or 
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164 ARTIFICIAL INTELLIGENCE APPLICATIONS IN CHEMISTRY 

connectivity of the molecule. This i s expressed as the property 
NEIGHBOR for each atom. This i s just the set of labels of other 
atoms connected to a particular atom. The NEIGHBOR property i s a 
compact way to store the adjacency matrix used i n graph theory. 

The chemist's sketch, processed into the l i s t representation 
just described, i s not yet very valuable; the system at the moment 
i s very ignorant of the structure of the molecule i n question. But 
the chemist knows much of the molecule from l i t t l e more than the 
diagram. How does the chemist "see" a complex molecular diagram? 
In our judgement a chemist knows so much about a molecule because he 
recognizes recurrent fragments of moderate size. Rings of varying 
atomic composition, structure, and size ranging from carbonyl groups 
to steroid systems, are recognized at a glance. Many stereochemi-
ca l l y well-defined fragments, such as spiro and norbornyl systems, 
are part of the chemist's conceptual t o o l k i t . Our programming task 
i s to assure that our system recognizes such fragments, with a l l the 
associated information on their structure and properties, with ease. 

Somehow we must discern the presence of meaningful, familiar 
fragments i n the molecular l i s t . We mimic this stock of informative 
portions of molecules i n our LISP system by l i s t s called FRAGMENTS. 
The FRAGMENTS, permanent members of a growing data base, each con
tain a set of ATOMS and a NEIGHBOR l i s t for each atom identifying the 
connectivity. Besides this topological information, the fragments 
contain as PROPERTIES a stock of attributes of the fragments. The 
f i r s t collection of PROPERTIES we gathered were interatomic di s 
tances gleaned from crystal structures. A l l interatomic distances 
are defined within a fragment. The system can now assign many 
(though not a l l ) interatomic distances i n an arbitrary molecule i f 
fragments could be discerned within the sketch. 

We have developed a search technique which w i l l scan the 
MOLECULE and locate a l l fragments. Design of this recognition algo
rithm i s d i f f i c u l t . The search routine shares some of the features 
of the "knapsack problem," a cl a s s i c d i f f i c u l t y i n computer science. 
We expect that we w i l l be able to speed this step considerably. At 
present we scan a l l stored fragments, though that i s not the way an 
expert would proceed. We screen out many fragments by a s u p e r f i c i a l 
test that the atoms i n the fragment must be a subset of the atoms i n 
the molecule. The fragments are subjected to more and more thorough 
tests, u n t i l recognition i s complete. These tests are essentially 
recursive applications of the requirement that i f a fragment i s to 
be id e n t i f i e d i n a molecule, the environment of each atom i n the 
fragment must be found i n the molecule for the corresponding atom. 
More d e t a i l on the search condition may be found i n a previous 
a r t i c l e (10). Figure 3 shows a ty p i c a l fragment representation. 

In this f i r s t formulation we have already established that i t i s 
most effective to scan the largest candidate fragments f i r s t . I t i s 
desirable to recognize overlapping fragments; more distances are 
determined. However, i t i s inevitably the case that a substantial 
number of distances w i l l be l e f t undefined, pa r t i c u l a r l y the longest 
distances which would not be incorporated into a fragment. 

Distance Geometry Changes Distances to Cartesian Coordinates. Most 
esperimental measures of molecular geometry provide quantities which 
may be most d i r e c t l y interpreted as defining interatomic distances. 
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TRINDLE An Intelligent Sketch Pad for Molecular Structure Programs 

A s s i g n m e n t , o f .3 L e w i s S t r u c t u r e 

F O R M U L A : H I Π Ν 0 3 < + ) 

C O M P U T E D V A L E N C E E L E C T R O N S : Si 

23 P A I R S A S S I G N E D T O L I N K S 

V E R T E X 3 A S S I G N E D 3 P A I R ( S ) 
V E R T E X 10 A S S I G N E D 2 P A I P C S ? 
V E R T E X 1 2 A S S I G N E D 3 P A I R ( S ) 
V E R T E X 1 A S S I G N E D 1 P A I R ; S ) 
V E R T E X 2 A S S I G N E D 1 P A 1 R ( S > 
V E R T E X 3 A S S I G N E D 1 P A I R ( S ) 

V E R T E X 4 , 5 , 6 , 7 , 11 U N S A T I S F I E D 

S H A R I N G B E T W E E N V E R T I C E S 4 A N D 3 
V E R T E X 5 U N S A T I S F I E D 
S H A R I N G B E T W E E N V E R T I C E S 5 A N D 4 
V E R T E X 3 U N S A T I S F I E D 
S H A R I N G B E T W E E N V E R T I C E S 3 A N D 2 
S H A R I N G B E T W E E N V E R T I C E S 6 A N D 1 
S H A R I N G B E T W E E N V E R T I C E S 8 A N D 7 
S H A R I N G B E T W E E N V E R T I C E S 1 2 A N D 11 
N O N Z E R O F O R M A L C H A R G E S : 

V E R T E X 1 : «• 1 

Figure 2 . The Lewis structure routine w i l l draw on the 
PROPERTY VALENCY, which i s the number of electrons each vertex 
contributes to the Lewis structure. I t assigns a pair of 
electrons to each LINK, and s a t i s f i e s the octet requirement. 
In case of resonance, i t w i l l choose one of the set of 
equivalent structures a r b i t r a r i l y . 

R e c o g n i t i o n o f A Set o f Known Fragments in a M o l e c u l e 

SIX MEMBERED RING RECOGNIZED (BENZENOID) 
BENZENE DISTANCES ASSUMED 
REVISED DISTANCE 1-2 
REVISED DISTANCE 1-6 
REVISED DISTANCE 1-10 

ACETYL GROUP RECOGNIZED 

ACETYL GROUP RECOGNIZED 

N-O-C SATURATED LINK RECOGNIZED 

C-C SATURATED LINK RECOGNIZED 

Figure 3. A typi c a l fragment decomposition for a molecule 
of moderate complexity. Roughly half of the interatomic 
distances can be specified i n this case by the fragment data. 
The remaining distances are estimated by the distance geometry 
algorithm of Crippen (11). 
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166 ARTIFICIAL INTELLIGENCE APPLICATIONS IN CHEMISTRY 

(In fact, usually the interpretation requires the presumption of a 
r i g i d framework so that interatomic distances are persistent.) 
There are N(N-l)/2 d i s t i n c t distances i n a cluster of Ν atoms, d i s 
regarding symmetry-dictated equivalencies. This set of distances i s 
of course redundant; 3N-6 Cartesian coordinates are s u f f i c i e n t to 
determine molecular geometry, apart from the position of the center 
of mass and the orientation of the principle moments of i n e r t i a . 
The larger the system, the more redundant i s the f u l l set of 
distances. 

Of course i t i s almost never the case that we have anything 
resembling a f u l l set of interatomic distances from experimental 
data. Crippen has shown how one may pass not only from Cartesian 
coordinates to interatomic distances, but from distances to Car
tesian coordinates (11). More si g n i f i c a n t , he has shown that an 
incomplete set of interatomic distances, together with even very 
crude estimates of unmeasured distances, can produce helpful e s t i 
mates of Cartesian coordinates. The estimates of missing distances 
can be provided by "triangle conditions" which express that a 1-3 
distance must be i n the range from the (absolute value of the) 
difference of the 1-2 and 2-3 distances to the sum of the 1-2 and 
2-3 distances. By a factor analysis of the matrix of vector dot 
products one obtains the best three-dimensional "imbedding" of the 
geometry. 

By the methods of Crippen we can use our well-known distances 
within i d e n t i f i e d fragments, with crude estimates of distances 
between atoms i n d i s j o i n t fragments, to estimate the geometry of the 
entire molecule. The factor analysis produces " s t a t i s t i c a l l y best" 
estimates of every distance. Of course we cannot evaluate the 
quality of the estimates of the missing longer distances. But the 
s t a t i s t i c a l l y best estimates of the shortest distances (influenced 
i n d i r e c t l y as they are by the poorly known longer distances) depart 
substantially from the known fragment distances. One can improve 
the overall estimates by replacing the estimates of the well-known 
distances by accurate values and it e r a t i n g the factor analysis. 

The structure produced by distance geometry i s not necessarily 
the optimum energy form. I t i s merely a legal three-dimensional 
structure reproducing the short-range structure. Of course i f some 
of the longer distances are known, further constraints are possible. 
In our experience, however, short-range fragment properties deter
mine much of the global form even of rather large systems. This i s 
par t i c u l a r l y s t r i k i n g i n (say, carborane) clusters and (even very 
large) rings, both of which are inconvenient to describe by other 
methods. 

Extensions of the Functional Fragment Data Structure. In p r i n c i p l e , 
any molecular property which may be represented as a sum of contri
butions from fragments i s natural to incorporate into the functional 
fragment representation. Maksic has recently reviewed such group 
ad d i t i v i t y relations, concentrating on atoms as the fundamental 
fragment (12). Magnetic and e l e c t r i c properties are remarkably 
well represented by such methods, i f a suitable hybridized elec
tronic state i s chosen for the atom i n the molecular environment. 
Such atomic a d d i t i v i t y relations are the simplest form of a fragment 
ad d i t i v i t y scheme for representation of molecular properties. If 

 P
ub

lic
at

io
n 

D
at

e:
 A

pr
il 

30
, 1

98
6 

| d
oi

: 1
0.

10
21

/b
k-

19
86

-0
30

6.
ch

01
4

In Artificial Intelligence Applications in Chemistry; Pierce, T., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1986. 



14. TRINDLE An Intelligent Sketch Pad for Molecular Structure Programs 167 

we choose s l i g h t l y larger fragments, molecular properties can be 
better represented. Ascending the scale, we can adapt the func
tion a l fragment data structure to help us perform bond energy 
calculations (13). Benson shows us how to estimate thermodynamic 
properties given values for fragments (14). Often i t i s possible 
to estimate spectra by summing chromophore properties, so long as 
the absorbing centers are only weakly coupled (15). The same state
ment applies to chemical r e a c t i v i t y , so long as the functional 
groups interact weakly (16). 

Interacting-Fragments Modeling Schemes may be Incorporated. I t i s 
not required that fragments be nearly independent parts of a mole
cule, and the molecular property be considered a simple sum of 
fragment properties. Consider for example the p o s s i b i l i t y of incor
porating the quantitative perturbation - molecular - o r b i t a l method 
of describing the electronic distribution i n molecules, which begins 
with MOs for fragments. The perturbation theory provides a syste
matic way to account for fragment interactions, and reproduces a 
wide variety of interesting electronic behavior at l i t t l e computa
tiona l cost (17). This effort s t i l l l i e s before us. 

Summary. The everyday reasoning of the chemist i s primarily p i c 
t o r i a l and qualitative; i t i s analogic. The chemist can make 
astounding predictions of the chemical, thermodynamic, and spectro
scopic properties of a substance given only an image, the structural 
formula. This process rests heavily on knowledge of the behavior 
of similar systems. We have devised a strategem whereby important 
molecular structure programs can be supplied the Cartesian coordi
nates they require, without forcing the chemist to provide much 
more than the structural diagram, which i s a more natural language. 
The system interprets a sketch impressed on a d i g i t i z i n g tablet, 
and scans the structure for familiar fragments. Stored properties 
of each known fragment include intra-fragment interatomic distances. 
From these known distances, a legal three-dimensional structure can 
be constructed by the methods of Crippen, and supplied i n the form 
of Cartesian coordinates to molecular structure programs. 
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T h e S i m i l a r i t y of G r a p h s and M o l e c u l e s 

Steven H. Bertz1 and William C. Herndon2 

1AT&T Bell Laboratories, Murray Hill, ΝJ 07974 
2University of Texas at El Paso, El Paso, TX 79968-0509 

A new definition of molecular similarity is presented, based upon the 
similarity of the corresponding molecular graphs. First, all of the 
subgraphs of the molecular graph are listed, and then various similarity 
indices are derived from the numbers of subgraphs. One of these 
compares favorably with the standard distance measures of sequence 
comparison. Measurement of similarity provides a new way to measure 
molecular complexity, as long as the most (or least) complex member of 
a set of molecules can be identified. 

The concept of the similarity of molecules has important ramifications for physical, 
chemical, and biological systems. Grunwald (7) has recently pointed out the 
constraints of molecular similarity on linear free energy relations and observed that 
"Their accuracy depends upon the quality of the molecular similarity." The use of 
quantitative structure-activity relationships (2-6) is based on the assumption that 
similar molecules have similar properties. Herein we present a general and rigorous 
definition of molecular structural similarity. Previous research in this field has usually 
been concerned with sequence comparisons of macromolecules, primarily proteins and 
nucleic acids (7-9). In addition, there have appeared a number of ad hoc definitions of 
molecular similarity (10-15), many of which are subsumed in the present work. 
Difficulties associated with attempting to obtain precise numerical indices for 
qualitative molecular structural concepts have already been extensively discussed in the 
literature and will not be reviewed here. 

Results and Discussion 

We begin with the way chemists perceive similarity between two molecules. This 
process involves, consciously or unconsciously, comparing several types of structural 
features present in the molecules. For example, considering the five aliphatic alcohols 
(represented by their Η-suppressed molecular graphs) in Figure 1, we note both 
similarities and differences: they are all four-carbon alcohols; a, b, c and d are acyclic, 
whereas e has a ring; a and b are primary alcohols, c and e are secondary alcohols and 
d is a tertiary alcohol; b and c have the same skeleton, but for the labeling of points 

(atoms), while the other skeletons are distinct; etc. 

0097-6156/86/0306-0169$06.00/0 
© 1986 American Chemical Society 
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The first step in quantifying the concept of similarity is to list all subgraphs of 
the given molecular graphs, e.g. a-e, which has been done in the first column of 
Table I. The subgraphs include the vertices (atoms), all connected subgraphs, and the 
full molecular graphs themselves, since it can be seen that the molecular graphs for a 
and c are both subgraphs of e. Next, the number of each subgraph contained in the 
molecular graphs must be counted. Row 1 lists the number of C atoms, row 2 the 
number of Ο atoms, row 3 the number of C-C bonds, row 4 the number of C-O bonds, 
etc. Gordon and Kennedy (16) defined N.. as the number of subgraphs of graph j 
isomorphic with graph /, and more colloquially as "the number of distinct ways in 
which skeleton ι can be cut out of skeleton j" The entries in Table 1 are the number 
of ways the subgraphs can be cut out of the molecular graphs (the number of 
subgraphs of the molecular graphs isomorphic with the subgraphs in the first column). 

In terms of the numbers of C or Ο atoms, a-e are equally complex. In terms of 
C-C bonds (ethane subgraphs) a-d are 3/4 as complex as e; however, in terms of 
propane subgraphs (row 5) a and c are 1/2 as complex as e. A simple algorithm that 
takes account of all the subgraphs involves comparison of two columns at a time, 
examining them row by row and dividing the smaller of the numbers by the larger. A 
similarity index (57) can then be calculated by taking the average of the quotients. Of 
course, for two identical molecular graphs, 57-1. Inclusion of the molecular graphs in 
the list of subgraphs ensures that two different molecules which have the same number 
of each proper subgraph will not have 5/— 1. The values of S 1(1) for a-e are 
summarized in the form of a similarity matrix SM(l) in Figure 2. 

A simpler similarity index can be calculated by dividing the sum of the lesser of 
the two numbers in each row by the sum of the greater. (Only two columns of Table I 
are considered at a time, of course.) The values of SI(2) for a-e are summarized in 
SM(2), also in Figure 2. According to both SI(l) and 5/(2), 1-butanol (a) and 2-
butanol (c) are the most similar, whereas f-butanol (d) and cyclobutanol (e) are the 
least similar pair. In between these extremes there are a significant number of 
disagreements between these indices. For example based on SI(l), c and e are more 
similar than c and d; however, c and d are more similar than c and e based on 57(2). 
There are seven such pairs (out of 45 possible pairs), and each index has one 
"degeneracy". By considering standard measures of "distance," 57(2) would appear to 
be the superior index (vide infra). 

The calculations of similarity indices can also be done with labeled subgraphs of 
a labeled molecular graph. The points can be labeled according to the valency of the 
corresponding atoms (i.e. whether they are primary, secondary, tertiary, etc.), labeled 
with stereochemical descriptors, or labeled to reflect isotopic composition to cite but a 
few examples. Furthermore, the number of similarity indices can be doubled by 
relaxing the stricture that only connected subgraphs be considered. We have 
concentrated on connected subgraphs, as they are more intuitively meaningful to the 
average chemist; nevertheless, for some applications the inclusion of disconnected 
subgraphs may be desirable or even necessary. 

Similarity and Distance. Two sequences of subgraphs m and η such as those in 
Table 1 have the property that there is a built-in one-to-one correspondence between 
the elements of one sequence (m,) and those of the other (/!,). Accordingly, it is 
straightforward to calculate various well-known (17) measures of the distance d 
between the sequences, e.g. Euclidean distance [2/0^r-/i,) 2] 1 / 2, "city block" distance 

 P
ub

lic
at

io
n 

D
at

e:
 A

pr
il 

30
, 1

98
6 

| d
oi

: 1
0.

10
21

/b
k-

19
86

-0
30

6.
ch

01
5

In Artificial Intelligence Applications in Chemistry; Pierce, T., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1986. 



15. B E R T Z A N D H E R N D O N Similarity of Graphs and Molecules 171 

Figure 1. Selected four-carbon alcohols, abstracted as their Η-suppressed molecular 
graphs: a 1-butanol, b isobutanol, c 2-butanol, d /-butanol, e cyclobutanol. 

SM(l) -

b c d 

0.561 0.682 0.417 

1.000 0.472 0.576 

1.000 0.472 

1.000 

1.000 

SM(2) -

b c d 

0.684 0.778 0.522 

1.000 0.619 0.609 

1.000 0.609 

1.000 

1.000 

Figure 2. Similarity matrices SM(l) and SM(2) for the graphs in Figure 1. 
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I. Subgraph Enumeration for Some Four-carbon Alcohols. 

SUBGRAPH 

α 

NUMBER IN 

b C 
GRAPH 

d e 

• 4 4 4 4 4 

ο 1 1 1 1 1 

— · 
3 3 3 3 4 

•—0 1 1 1 1 1 

2 3 2 3 4 

1 1 2 3 2 

1 0 1 0 4 

1 2 1 0 2 

X 0 1 0 1 0 

X 0 0 1 3 1 

π 0 0 0 0 1 

α 1 0 0 0 2 

b 0 1 0 0 0 

c X- 0 0 1 0 2 

d 0 0 0 1 0 

e 0 0 0 0 1 
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2,-ΙΉ/—Hjl, or Hamming distance, which counts the number of positions in which the 
corresponding elements are unequal. It may be noted that these are measures of 
dissimilarity; of course, it is easy to draw conclusions about similarity from them (e.g. 
by taking their inverse). Table II contains the distances calculated according to each 
of the definitions discussed above as applied to molecular graphs a-e. The three 
distance functions parallel each other quite closely: there are only two disagreements 
between Hamming distance and Euclidean distance, and there are no disagreements 
between city-block distance and Euclidean distance. There is a two-fold degeneracy 
within city-block distance and Euclidean distance (the same as S 1(1) and S 1(2)) and a 
four-fold one within Hamming distance, which is the crudest measure. Both city-block 
and Euclidean distance have only a single disagreement with 5/(2), but many with 
5/(7); therefore, it is recommended that 5/(2) or one of the distance measures that 
parallel it be used to index similarity. 

Table II. Distance Measures 

Hamming City-bl. Euclid. 1/City-bl. 1/Euclid. 5/(7) 5/(2) 

</(a,b) = 6 6 2.449 0.167 0.408 0.561 0.684 
</(a,c) SES 4 4 2.000 0.250 0.500 0.682 0.778 
rf(M) 8 11 4.359 0.091 0.229 0.417 0.522 
</(a,e) 10 14 4.899 0.071 0.204 0.462 0.517 
d(.b,c) 8 8 2.828 0.125 0.354 0.472 0.619 
d{b,d) * 5 9 4.359 0.111 0.229 0.576 0.609 
rf(b,e) = 11 16 5.657 0.062 0.177 0.400 0.484 
d(c,a) - 8 9 3.317 0.111 0.301 0.472 0.609 
dice) 8 12 4.690 0.083 0.213 0.577 0.586 
d(d,e) 12 19 6.245 0.053 0.160 0.367 0.441 

Similarity and Complexity. On account of the variety of features that contribute to 
the complexity of a molecule (e.g. rings, double bonds, branching, heteroatoms, etc.), 
two molecules can have the same complexity and yet be quite dissimilar, depending on 
the weights given to the features (18). In contrast two molecules which are very 
similar must have nearly equal complexities. Therefore, once the most complex 
member of a family of molecules has been identified somehow, the others can be 
ranked in order of complexity by calculating their similarity to it. For example, taking 
tetrahedrane as the most complex member of the family butane (P4), cyclobutane 
(C 4), bicyclobutane (K4— x), tetrahedrane (K4), 5/(2) confirms that this is the order 
of increasing complexity. The same order is obtained by considering the total number 
of subgraphs or by counting only the number of propane subgraphs (19), η (Table III). 
Subgraph Enumeration. The total number of subgraphs increases rapidly with the 
number of atoms, making hand calculations of SI impractical for large molecules. 
Therefore a computer program was written. Our program is based on the fact that the 
entries in the nth power of the adjacency matrix of a graph count paths of length n, 
which includes retraced pathways and, therefore, branched chains and cycles. A 
molecular graph is represented by the string adjacency matrix A $(/,/), where the 
/,/-entry is a string of characters describing a bond (I^J) or an atom ( / e J ) . 
Matrix multiplication is defined as string concatenation. The concatenated strings are 
alphabetized, processed to eliminate duplicates, sorted by number of bonds, and stored 
for future use. (A copy of this program can be obtained by writing to WCH.) 
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Table III. Complexity Measures PA Q K4-x KA 

G SI(G,K4) Subgraphs V 1.000 0.588 0.303 0.156 PA 

PA 0.156 10 2 S M (2)-
1.000 0.515 0.266 C4 

C4 0.266 17 4 
1.000 0.516 *4 

K4—x 0.516 33 8 
1.000 *4 

*4 1.000 64 12 

Potential Applications. Quantitative structure-activity relations have been formulated 
on the basis of common substructures (2,14) and similarity indexing (5JO). For 
example, Carbo et al. (10) related phermone activity to "an electron density measure 
of similarity between two molecular structures." Randic et al. (14) have related 
pharmacological activity to the numbers of paths in the molecular graph. The 
extension from this one kind of subgraph to all possible subgraphs should improve the 
statistical correlation of properties with substructures; but, even more importantly, it 
will make the results easier to visualize in a way that is meaningful to a chemist. 
Gordon and Kennedy (16) observe that a physical measurable can be expressed as a 
linear combination of graph-theoretical invariants (Ntj, see above). By using all 
possible subgraphs in such an analysis and optimizing the coefficients the most 
important ones might be found. 

Another important subject for similarity considerations is the planning of organic 
syntheses. Wipke and Rogers (20) point out that "chemists do not always work 
systematically backward but sometimes make an 'intuitive leap' to a specific starting 
material from a target without consideration of reactions needed for interconversion. 
This intuitive leap probably involves a Gestalt pattern recognition based on the 
chemist's knowledge of available starting materials and similarity between the starting 
material structure and the target structure." Our method should allow not only the 
overall similarity of target and potential starting material to be assessed, but also the 
similarity of portions (substructures) of the target and all or part of a starting material. 

Acknowledgment. W C H is grateful to the Robert A. Welch Foundation of Houston, 
Texas for financial support. 
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S y m b o l i c C o m p u t e r P r o g r a m s Applied to Group T h e o r y 

Gordon D. Renkes 

Chemistry Department, Ohio Northern University, Ada, OH 45810 

Applications of symbolic computer programming to group 
theory will be discussed. These programs, which are 
written in Common Lisp, perform the symbolic 
manipulations involved in the generation of 
multiplication tables, finding the classes, taking 
products of groups, establishing the correlations 
between subgroups and supergroups, etc. This software 
should prove very useful for applications of group 
theory to the spectroscopy of non-rigid molecules, for 
which the molecular symmetry groups are often large, 
not standard point groups, and very tedious to 
manipulate by hand. 

The symposium one year ago on symbolic computing i n chemistry, and 
th i s symposium on uses of a r t i f i c i a l intelligence i n chemistry 
demonstrate that symbolic computation i s now becoming recognized as 
a useful tool for chemists. Just as computer "number crunching" i s 
now f u l l y accepted and implemented to assist the solving of many 
chemical questions, i t appears that eventually computer "symbol 
crunching" w i l l f u l f i l l an equally important role to assist the 
chemist with his thinking. 

Why Symbolic Computing for Group Theory? 

This paper addresses the application of symbolic programming to the 
symbolic manipulations of group theory. Chemists are already 
familiar with the standard applications of group theory as explained 
in the standard texts. For many applications, the useful 
information such as character tables and correlation tables are i n 
their appendices. However, i n certain areas of current research, 
such as the interpretation of the spectra of non-rigid molecules, 
unfamiliar and sometimes large groups which are not included i n the 
standard tables are employed (1^4). A variety of formulations have 
been developed to approach the analysis of the symmetries of such 
species, (e.g. molecular symmetry group and the isometric group, 
etc.). They a l l share the common hazzard of many elements and 

0097-6156/86/0306-0176$06.00/0 
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tedious manipulations for many molecules of interest. When 
confronted with t h i s situation, the investigator must generate the 
required tables himself, i f he i s not lucky enough to find them 
published somewhere. A common clause in many papers reads "The 
character table for t h i s group has already been published....". The 
reader can hear the author's sigh of r e l i e f that he didn't have to 
work i t out himself. Many labor saving techniques have been devised 
to speed up t h i s process, e.g. (4), but these have to be learned and 
executed with care. And, the amount of paper work involved can s t i l l 
be considerable, especially when complicated situations are 
considered. For example, to evaluate the classes and character table 
for the molecule boron trimethyl (of order 324) required 18.5 pages 
and 15 intermediate tables even when e f f i c i e n t algorithms were used 
(4). Upon surveying t h i s situation, one can appreciate the 
convenience of computer programs which would handle the tedious 
details. (This would be analogous to the application of computers 
to numerical computations. Before computers, tedious arithmetic was 
minimized by use of log tables, perturbation theory, algebraic 
approximations, etc. With computers, computations can be executed 
with far fewer approximations and applied to more extensive and 
r e a l i s t i c situations.) Such programs would be useful tools, because 
they would free one to spend more time thinking about the problem at 
hand, and to quickly test out ideas without having to decide, "Is i t 
worth the effort?" 

Lisp as a Language for Implementation 

Given that such programs would be useful, we must next decide which 
language would be most appropriate for implementation. At least 
three reasons j u s t i f y the symbolic language Lisp. 

F i r s t , Lisp i s designed to be used interactively at a 
computer terminal. This would be very convenient for the 
investigator in the midst of thinking about a particular problem. 
Suppose a question arises which requires the use of group theory 
tables. Rather than digging through appendices or searching in the 
l i b r a r y , the computer programs would be employed to supply results 
on the spot, even i f no one has ever done i t before. 

Second, the fundamental data structure of the Lisp language 
i s a l i s t of symbols. Two examples of legitimate l i s t s are, 

(1 2 3) and ( (1 2 3) (4 5 6) (7 8 9 ) ) 

The f i r s t i s a simple l i s t of three integers, and the second i s a 
l i s t of l i s t s , each of which i s a simple l i s t of three integers. 
The parentheses serve to enclose the l i s t s . Such l i s t s ideally 
match the permutation notation for group operations which are 
employed in these programs. For example, to represent the 
permutation of the integers 1 and 2 i n a l i s t of integers ( 1 2 3) 
one writes, 

operator * operand = result 

(1 2) * ( 1 2 3)= (2 1 3) 
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And, the product of two operators, which i s equal to another single 
permutation operator i s written, for example, 

operator * operator = operator 

(1 2 3) * (1 2 3) = ( 3 2 1) 

(This matches the notation used by many spectroscopists who study 
non-rigid molecules (1^3). At present, a user of t h i s software i s 
confined to t h i s notation, although i t could be possible to expand 
the capability of reading and displaying standard point group 
notation at the terminal.) 

F i n a l l y , the language provides b u i l t in devices for 
conveniently manipulating, categorizing, storing and recall i n g a l l 
the information which pertains to a group, such as the 
multiplication table, classes, characters of the irreducible 
representation, correlations between subgroups and product groups, 
etc. Much of the rest of t h i s paper w i l l summarize the d e t a i l s of 
how t h i s i s done. 

Implementation Discussion 

Basic Functions. The fundamental symbolic operation which i s used 
performs the permutations on l i s t s of numbers. The Common Lisp 
supplied function ROTATEF i s designed to do just t h i s . An arbitrary 
number of arguments can be supplied to i t , and i t returns a l i s t i n 
which the f i r s t argument i s at the end, and the others have been 
shifted one space to the l e f t . An example of the application of 
t h i s function, and the result displayed on the screen i s , 

(ROTATEF 11 '2 '3) 

(2 3 1) 

A user function CYCLOPERATE was written to employ t h i s Lisp 
function, using the operator l i s t as a recipe for how ROTATEF should 
rearrange the numbers i n the operand l i s t . In t h i s example, the 
l i s t (1 2 3) i s the operator, and (1 2 3 4 5) the operand. The 
permuted l i s t i s returned as the result of the function. 

(CYCLOPERATE '(12 3) ' ( 1 2 3 4 5 ) ) 

( 2 3 1 4 5 ) 
Another user function, PERMUTE, applies CYCLOPERATE repeatedly when 
a l i s t of permutation operators i s applied successively to an 
operand l i s t , to return a l i s t of permuted numbers, 

(PERMUTE '( (1 2 3) (2 3 4) (3 4 5) ) ' ( 1 2 3 4 5 ) ) 
( 2 1 3 5 4 ) 

These two functions, and one more which can reconstruct a 
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permutation operator from a permuted l i s t , serve as the workhorses 
for the procedure of setting up a group multiplication table. 

Some of the information pertaining to a group i s stored i n 
property l i s t s . Table I exemplifies how t h i s looks for the simple 
case of the c y c l i c group of order three. (This would be isomorphic 
to the rotational subgroup of a molecule such as methyl fluoride. 
The operators (1 2 3) and (1 3 2) would correspond to the 
permutations of the three hydrogen n u c l e i i numbered 1, 2 and 3. 
N3L, the language's symbol for the empty l i s t , serves as the 
identity.) 

Table I. Property l i s t s for c y c l i c group, order 3· 

( #:GRP-1 #:GRP-2 //:GRP-3 ) 

PERMOP (NIL) PERMOP ((1 2 3)) PERMOP ((1 3 2)) 

RESULTLIST ( 1 2 3) RESULTLIST (2 3 1) RESULTLIST (3 1 2) 

INVPERMOP (NIL) INVPERMOP ((1 3 2)) INVPERMOP ((1 2 3)) 

INVERSE #:GRP-1 INVERSE #:GRP-3 INVERSE #:GRP-2 

CLASS #:CLS-1 (LASS //:CLS-2 CLASS #:CLS-3 

#:GRP-1 #:GRP-1 #:GRP-1 #:GRP-2 #:GRP-1 #:GRP-3 

#:GRP-2 #:GRP-2 #:GRP-2 //:GRP-3 #:GRP-2 //:GRP-1 

#:GRP-3 #:GRP-3 #:GRP-3 #:GRP-1 //:GRP-3 #:GRP-2 

The three operators are represented by the three Gensyrn symbols i n 
the l i s t (#:GRP-1 #:GRP-2 #:GRP-3) which i s stretched out across the 
top of the table to make room for the property l i s t s underneath. 
These symbols by themselves mean nothing. The useful information i s 
contained i n the property l i s t s , which are displayed underneath i n 
v e r t i c a l tabular format for readability. The property l i s t i s a 
l i s t of pairs of symbols. The f i r s t symbol of each pair i s the 
property indicator, which allows access to the second symbol, the 
property value, by execution of an access function. For example, 
the PERMOP property i s the permutation operator for each group 
element. I f we want the permutation operator for a particular group 
element, we use the access function GET, to get from the appropriate 
GENSYM symbol the PERMOP property. 

(GET '#:GRP-2 'PERMOP) 

((1 2 3)) 
The RESULTLIST property i s the result of operating with that 
operator on an i n i t i a l l y ordered operand l i s t . INVPERMOP and 
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INVERSE are the inverse operator l i s t , and the Gensym symbol for i t , 
respectively. The CLASS property value i s another Gensym atom which 
has as i t s value a l i s t of a l l of the operators i n that class. (In 
t h i s simple case, the value of #:CLS-1 i s the l i s t (#:GRP-1), etc.) 
The remaining pairs i n each property l i s t represent the group 
multiplication table. For any particular group multiplication, an 
element of the group l i s t at the top of Table I pertains to the 
right operator, the property indicator pertains to the l e f t 
operator, and the property value pertains to the product. For 
example, for the product of the permutation operator ( 1 2 3) with 
i t s e l f , 

(GET »#:GRP-2 »#:GRP-2) 

#:GRP-3 
And to obtain the operator i t s e l f , 

(GET (GET «#:GRP-2 f#:GRP-2) »PERMOP) 

((1 3 2)) 
Much of the computational labor expended i s used to set up these 
property l i s t s , but once that i s accomplished, other manipulations 
which need the information stored i n them only have to GET the 
results which are stored i n these property l i s t s . 

The strategy used to set up the multiplication table i s 
handled by a function which accepts a l i s t of operators which are a 
set of generators for that group. A l l possible products between the 
generators f i l l i n a portion of the table, and usually produce new 
operators. Further multiplication using these new operators f i l l s 
i n more of the table, and may produce more new operators. This 
process i s repeated exhaustively u n t i l no new operators are 
produced, at which point the closure property of groups i s 
s a t i s f i e d , and the table i s complete. Following t h i s , another 
function uses t h i s table to find the conjugacy classes by 
application of the d e f i n i t i o n . 

Terminal Display and Practical Usage. Once calculated, other user 
functions can extract the desired information from the internally 
stored representation and display i t on the terminal or print i t on 
a li n e p r i n t e r . Table I I shows the l i s t of operators by classes for 
S3, the permutation group of degree three, as displayed on the 
terminal. (This i s isomorphic to the point group C-3V.) The 
multiplication table and character table can also be displayed i n 
appropriate formats, although the multiplication table i s readable 
for only the smallest groups, and probably would not normally be 
displayed anyway. (At the present stage of development, the 
character table must be entered from the terminal. A function which 
sets i t up from scratch w i l l be written i n the near future. Also at 
present, the classes are simply numbered.) 

Other typical group manipulations can be performed once a l l 
the aforementioned information has been found. For example, direct 

 P
ub

lic
at

io
n 

D
at

e:
 A

pr
il 

30
, 1

98
6 

| d
oi

: 1
0.

10
21

/b
k-

19
86

-0
30

6.
ch

01
6

In Artificial Intelligence Applications in Chemistry; Pierce, T., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1986. 



16. R E N K E S Symbolic Computer Programs Applied to Group Theory 181 

Table I I . Terminal Display of Classes 

For the group S3 

Operators by Classes 

1 i s (NIL). 

2 i s ((1 3 2)), ((1 2 3 ) ) . 

3 i s ((2 3 ) ) , ((1 3 ) ) , ((1 2)). 

products can be taken between two groups, and the correlations 
established between the representations of the subgroups and the 
product group. Consider the direct product of the permutation 
groups of degree three and degree two, represented by the names S3 
and S2, to produce the product named S3-DP-S2. The character table 
of the product group i s exhibited i n Table I I I . The default labels 
for the representations i n the product group are formed by 
concatenating the labels of the representations i n the subgroups (A 
and Β for S2, and A1, A2 and Ε for S3). 

Table I I I . Terminal display of character table of 
direct product of S3 with S2 

For the group S3-DP-S2 

Group character table. 

(LASS 1 2 3 4 5 6 

A1A 1 1 1 1 1 1 

A1B 1 1 1 -1 -1 -1 

A2A 1 1 -1 1 1 -1 

A2B 1 1 -1 -1 -1 1 

EA 2 -1 0 2 -1 0 

EB 2 -1 0 -2 1 0 

A record of the correlations between the representations i s 
constructed with association l i s t s while taking the product, and 
these can be used to display character correlation tables i n both 
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the forward sense, from a subgroup to the product group, and i n the 
reverse sense, from product group to a subgroup. Table IV shows the 
terminal display of both forward correlations. 

Table IV. Terminal Display of Character Correlation Tables 

Character correlation table. 

SUBGROUP PRODUCT-GROUP 
S3 S3-DP-S2 

A1 A1B A1A 

A2 A2B A2A 

Ε EB EA 

Character correlation table. 

SUBGROUP PRODUCT-GROUP 
S2 S3-DP-S2 

A EA A2A A1A 

Β EB A2B A1B 

Products between the irreducible representation characters 
within a group w i l l produce representations which are often 
reducible. A simple calculation can decompose t h i s product to a sum 
of the irreducible representation characters, as i s demonstrated i n 
Table V for two representations from the S3-DP-S2 group. 

Table V. Terminal display of the decomposition of the product 
of two representations of S3-DP-S2 

Within the group S3-DP-S2 

EA 2 - 1 0 2 - 1 0 

EB 2 - 1 0 - 2 1 0 

EAxEB 4 1 0 - 4 - 1 0 

The decomposition i s 

EAxEB 1 EB 1 A2B 1 A1B 

 P
ub

lic
at

io
n 

D
at

e:
 A

pr
il 

30
, 1

98
6 

| d
oi

: 1
0.

10
21

/b
k-

19
86

-0
30

6.
ch

01
6

In Artificial Intelligence Applications in Chemistry; Pierce, T., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1986. 



16. R E N K E S Symbolic Computer Programs Applied to Group Theory 183 

Other Implementation Details. A l l of the information resulting from 
the computations described above i s stored i n a named record 
structure which i s defined using the Common Lisp DEFSTRUCT f a c i l i t y . 
An example of what t h i s looks l i k e i s shown i n Table VI for the 
group S2, which we used e a r l i e r . 

Table VI. Record structure which stores a l l the 
information pertaining to the group S2 

ORDER 2 

OPERAND-LIST (4 5) 

GROUP-LIST (#:GRP--10 #:GRP-11) 

CLASS-LIST (//:CLS--7 #:CLS-8) 

CHARACTER-LIST (#:CHR--8 #:CHR-9) 

SUBGROUPS NIL 

SUPERGROUPS (S3-DP--S2) 

The l e f t element on each l i n e i s a name for the f i e l d (or record) 
which i s shown i n the right element. The ORDER of t h i s group i s 2. 
The OPERAND l i s t used for t h i s example was the numbers 4 and 5. The 
Gensym symbols for the two group elements are stored i n the 
GROUP-LIST f i e l d . As was explained e a r l i e r , property l i s t s were 
attached to each of these which contained the multiplication table 
and other information. The elements of the CLASS-LIST and 
CHARACTER-LIST f i e l d s contain the information indicated by their 
names. In the above examples, we did not work with the subgroup of 
S2, so NIL i s stored there; but the direct product name S3-DP-S2 i s 
stored i n the f i e l d SUPERGROUPS. Attached to t h i s name (not shown) 
i s the association l i s t for the correlation between the 
representations, which was used for the construction of Table IV. 

The examples used above to i l l u s t r a t e the features of the 
software were kept deliberately simple. The u t i l i t y of the symbolic 
software becomes appreciated when larger problems are attacked. For 
example, the direct product of S3 (order 6) and S4 (isomorphic to 
the tetrahedral point group) i s of order 144, and has 15 classes and 
representations. The l i s t of classes and the character table each 
require nearly a f u l l page of lineprinter printout. When asked for, 
the correlation tables and decomposition of products of 
representations are evaluated and displayed on the screen within one 
or two seconds. Table VII shows the results of decomposing the 
products of two pairs of representations i n t h i s product group. 

These programs have been coded i n Common Lisp (5) which i s 
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being promoted as a standardized dialect which should be easily 
transportable between different computers. (It has not been 
determined i f i t could operate on any microcomputer implementations 
of Common Lisp.) 

Other Group Theory Software 

Other published reports of computer programs applied to group theory 
include the following. J.J. Cannon (University of Sydney) i s a 
mathematician who has led the writing of a large set of Fortran 
programs to generate and study groups from a mathematician 1s point 
of view 05), C. Trindle (Univ. of Virginia) has written programs 
in Basic7 which execute on an Apple microcomputer (7). These 
programs are also intended to be used for academic instruction i n 
group theory as well as for research work. K. Balasubramanian 
(Arizona State) has written programs which use the wreath product 
formalism to generate the permutation operators for non-rigid 
molecules (8), and compute nuclear spin s t a t i s t i c a l weights (9). 

Future Plans 

Some features which w i l l be included in future developments of these 
programs include; the evaluation of semi-direct products between 
groups, the direct evaluation of the character tables from scratch, 
and storing i n f i l e s the record structures which contain the 
information about the larger groups. The f i r s t two are necessary 
for useful work to be accomplished for non-rigid molecule groups, 
since their construction usually includes the semi-direct product 
combination of subgroups. The th i r d feature i s intended to avoid 
repeating long computations which occur for large groups, even on a 
computer. 
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A M u l t i v a l u e d Logic Pred ica te C a l c u l u s Approach 

to Synthesis Planning 

W. Todd Wipke and Daniel P. Dolata 

Department of Chemistry, University of California, Santa Cruz, CA 95064 

Stereochemical principles of synthesis planning have 
been axiomatized using first-order predicate calculus 
with a multi-valued logic as implemented in the QED 
system. Given the definition of a synthetic target 
molecule as a set of axioms, QED is able to infer a 
synthesis plan in high-level terms without reference to 
reactions. Key benefits of this approach are clarity of 
expression and transparency of the system: al l chemical 
knowledge used is explicit in the axioms. 

The purpose of th i s research was to explore the representation, 
manipulation, and u t i l i z a t i o n of strategic knowledge i n organic 
synthesis planning. The method we decided to explore was to create 
an axiomatic theory to replace our i n t u i t i v e theory about chemical 
synthesis. This formal method of reasoning i s very powerful in that 
i t completely eliminates any questions about the method used to reach 
a conclusion. Since any conclusions reached would be theorems of the 
axiomatic theory, the acceptability of the conclusions rests 
completely on the acceptability of the postulates and not upon the 
method of reasoning. We are then free to focus on the chemical 
principles which are provided as postulates. 

In t h i s paper we describe the need for planning, and then 
develop the predicate calculus we used and the choice of multi-valued 
lo g i c . F i n a l l y we b r i e f l y describe the QED program, a few rules, and 
an example analysis. Other papers in the QED series w i l l cover the 
program and chemical results in d e t a i l . 

Meed For Planning 

Synthesis planning programs such as SECS, (Y)(2) (3») LHASA, ( 4 ) ( 5 ) or 
S Y N C H E M C 6 M 7 ) work backward from the target molecule to be 
synthesized toward starting materials. By applying applicable 
chemical transforms (inverse chemical reactions) to the target, the 
f i r s t set of chemical precursors i s generated. Each of these in turn 
can be considered a new target and processed i n l i k e manner 

0097-6156/ 86/ 0306-0188S06.00/ 0 
© 1986 American Chemical Society 
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recursively. This process develops a "synthesis tree", where nodes 
in the tree correspond to chemical structures and edges to chemical 
transforms. The fundamental problem i s that there are many possible 
chemical transforms that can be applied and typical syntheses require 
several steps. If each molecule in the tree has ten precursors, by 
the time we reach the sixth l e v e l , one m i l l i o n precursors must be 
evaluated! I f our program can process 10 precursors per second, t h i s 
w i l l require a day. This example actually underestimates the size of 
the problem, because the typical branching factor i s between 100 to 
200 rather than ten, and many syntheses require more than six or 
seven steps. 

Approaches to Large Search Spaces 

- Heuristics 
- Macro Operators 
- Abstraction 
- Planning 

A heuristic i s a rule of thumb may lead to a shortcut in the solution 
of a problem. If such a heuristic removes 90% of the routes at each 
l e v e l , then i t w i l l eliminate 99% of the possible routes by the 
second l e v e l , 99.9% by t h i r d , etc.. Even a simple heuristic can make 
the problem far more tractable. Gelernter !s SYNCHEM 11(7,) i s an 
example of a program that has focused on heuristic evaluation 
functions for reducing the search space that must be explored. Wang 
used macro operators to establish "planning islands" that can then 
serve as near-term objectives.(8^ The macro operators make bigger 
jumps in the search space, thus eliminating much branching and 
combinatorics. Abstraction can be used to simplify chemistry so 
there are fewer kinds of functional groups, and fewer chemical 
transforms, thus a reduced search space.(9) Planning provides 
direction i n the search space, thus permits pruning of pathways which 
are headed in the wrong direction and permits focusing resources in a 
particular direction. 

Prov iding a_ Sense of Purpose. Planning i s more than just a 
heuristic evaluation function that measures complexity. The ultimate 
goal of synthesis i s to prepare the complex from things simple. Thus 
in Figure 1 our goal i s to find syntheses that lead downward, but 
some excellent syntheses may require increasing the complexity of a 
precursor i n order to ultimately lead to a very simple one as the 
path Τ —> Ρ " —> Ρ ~ i n Figure 1 i l l u s t r a t e s . Going u p h i l l in 
complexity i s acceptable if_ there i s some purpose and a plan provides 
that sense of purpose. 

Plan Representation i n SECS. The SECS Simulation and Evaluation of 
Chemical Synthesis program e x p l i c i t l y represents i t s plans(2) as a 
l i s t structure of goal instructions with l o g i c a l connectives. A goal 
instruction can specify one of the following: 

- Introduce a functional group at a position 
- Change a functional group at a position 
- Make or Break a bond 
- Use an atom, bond, or group 
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The logic instruction can include AND, OR, NOT, or XOR, and also 
includes an action to take i f the goals beneath i t are not achieved. 
The actions generally modify the evaluation score for a synthesis 
pathway or completely terminate consideration of a synthesis 
pathway. 

SECS uses the goal l i s t to select transforms that appear to have 
the potential for satisfying the goals, based on the character of the 
transform. The character of a transform specifies the types of 
architectural changes the transform may effect. The goals specify 
desired architectural changes in the molecule. It i s the 
responsibility of the SECS program to find transforms that can 
achieve the goals. The strategy module of SECS creates a plan and 
writes i t on the goal l i s t . The chemist may modify those goals or 
add new ones. 

The Strategic Basis. The strategic basis for designing a synthesis 
plan rests on general principles of molecular architecture 
construction, and i s independent of reaction knowledge. Examples 
include symmetry of the target molecule, potential symmetry of the 
target molecule, the relative r e a c t i v i t y of functional groups in the 
target, consideration of potential starting materials, the 
connectivity of the structure, and the control of stereochemistry. A 
symmetry-based strategy for 3-carotene i s shown i n Figure 2. The 
reaction-independent principle i s to construct the molecule from 
identical pieces to take advantage of the symmetry of the structure. 
The resulting goal structure i s a set of three alternative goals, 
each of which specifies two bonds that should be broken in the 
analytical direction. 

Since we were interested in studying these strategies, we wanted 
a means for e x p l i c i t l y representing the principles that enabled us to 
easily modify them and to be able to easily understand exactly what 
principles the program was using. For t h i s reason the QED project 
was initiated.(JJ)) QED was to use statements of the principles 
together with a d e f i n i t i o n of the molecule and then infer a 
reasonable set of strategies for the synthesis of the molecule and 
write these to the SECS goal l i s t . 

F i r s t Order Predicate Calculus 

We chose the f i r s t order predicate calculus (PC) as our language for 
representing synthetic principles. The f i r s t order predicate 
calculus (PC) i s a "formal" system of logic.(JJ_)(Jj2)(J_3) In th i s 
context, formal means that i t i s the form of the arguments that i s 
important, not the actual content. The term "calculus" comes from 
the meaning "a method of calculation", and does not refer to Newton1s 
d i f f e r e n t i a l calculus. 

To give an example, the following form of argument i s known as 
modus ponens: " I f statement A implies conclusion B, and we know A to 
be true, then we may conclude B" and may be represented as follows: 

A => Β 
Β 

:. Β 
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Figure 2. Symmetry-based strategies for 3-carotene. 
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It i s possible to substitute various meanings to the statements A and 
B, and as long as t h i s form i s followed, the conclusion i s said to 
follow from the premises. A could be the statement "A ketone i s 
present" and Β could be "A carbonyl i s present". If A i s true, then 
Β follows from the premises. 

If the conclusion seems to be in error, and the chain of 
reasoning i s v a l i d , we have then demonstrated that one (or more) of 
our i n i t i a l assumptions must be erroneous. For example, i f one of 
the premises was the implication " I f a ketone i s present then the 
compound i s an alkane", then the conclusion that would follow from 
the observation "a ketone i s present" would be obviously false. 
Since the PC i s l o g i c a l l y correct (in fact defines " l o g i c a l l y 
correct") any erroneous conclusions must arise from an erroneous 
axiom, and cannot be the fault of the calculating procedure used. 
This allows us to focus our attention on the assumptions and frees us 
from having to worry about the procedure. 

A Working Definition of the Predicate Calculus. In a formal 
theory(13) the statements are written i n a specially constructed 
symbolic language, and are manipulated in accordance with specified 
rules which make no appeal to any possible meaning of the symbols. A 
string i s a f i n i t e sequence of these formal symbols. There exists a 
grammar for deciding i f a string i s a statement. There i s a method 
for determining i f a statement i s an axiom. This method involves 
pattern matching, and perhaps rearrangement and rewriting. Given a 
f i n i t e sequence S , ... ,S, of statements, there i s a procedure for 
deciding i f S follows from one or more S^ ... ,S^ by the rule of 
inference. The formal symbols defined are shown i n Table I. 

Table I. The Formal Symbols of the PC used by QED. 

Name Normal QED 
Representation Representation 

For A l l V $A11 
There Exists 3 $Exists 
And Λ •and. 
Or V .or. 
Not ~ .not. 
If/Then => i f then 
If and Only If <-> i f o n l y - i f 
Therefore :. (not used) 
Parenthesis ( ) ( ) 
Brackets c ] C ] 
Curly bracket t } { } 
Comma 
Predicate P,Q,R... I n i t i a l capital l e t t e r 
Identifier i ,x,z... A l l small l e t t e r s 

To decide i f a formula i s a well formed formula (wff) of the 
i t must conform to the following d e f i n i t i o n : 

1. There exists a set of variable symbols, a ... z, which can 
hold places. We can also define a set of objects, o^ ... ο , 
also known as constants. This set of objects i s known as the 
domain. 
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2. For each of η = 0, 1, ... there i s a possibly empty set of 
η-place predicates. These are denoted by P(x^ f ... »χ

η^· 
This predicate may represent some property of an object, or a 
relationship between objects. 

3. An "atomic formula" of the PC i s formed by taking a n-place 
predicate symbol Ρ(χ^, ... »x

n^» a n c l substituting variables or 
constants for any of the χ.. 

4. A formula of the PC i s formed by combining atomic formulae 
using the connective symbols ν, Λ, ~, => or <->. 

5. A formula of the PC may be preceded by a quantifier, V or 3. 
6. Parentheses are used to avoid confusion when the order of 

evaluation or the scope of the arguments i s important. 
Parentheses, square brackets and curly brackets are a l l 
equivalent, and may be used interchangeably, as long the same 
type i s used to open and close the same term. 

If A, Β and C represent atomic formulae, then the following are 
examples of formulae: 

A V A 
Α ν Β 3 χ Β 
Α Λ Β A A ( B V C ) 
Α => Β ( ( Α => Β ) => C ) 
Α ν ( Β => A ) 

An object may be any "thing". This can include tangible items 
such as atoms, or bonds, or can include non-tangible things such as 
goals, or plans. In the f i r s t order PC, an object may not be a 
predicate. 

Predicates are properties of objects, or relationships between 
objects. A predicate i s derived from the predicate clause of a 
sentence. In the sentence "atom 5 i s a carbon", the predicate clause 
i s " i s a carbon". This would be represented as Is-carbon(atom5). To 
avoid confusion, names of predicates and objects are written without 
embedded blanks or spaces. 

Translating Chemical Statements into Predicate Logic. In the 
following examples, we use the QED representation for connectives and 
quantifiers. 

an atom which i s a ring atom 
Ring-atom (x) (1) 

atom5 i s a ring atom 

Ring-atom (atom5) (2) 

atomU and atom5 are ring atoms 

Ring-atom (atomU) .and. Ring-atom (atom5) (3) 

atom4 and atom5 are alpha 
Alpha (atom4, atom5) (4) 
Note the difference between equations 3 and 4, where an e l l i p s i s 

makes the two phrases look similar. However, i f 3 i s rewritten as 
shown i n 5 the difference i s obvious. In equation 5, the English 
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word "and" i s used in the l o g i c a l sense, whereas in equation 4, "and" 
indicates items which w i l l be related by a predicate phrase. 

atom4 i s a ring atom and atom5 i s a ring atom (5) 

atom4 and atom5 or atorn6 are beta 
Beta (atom4, atom5) .or. Beta (atom4, atom6) (6) 

bond12 i s not an appendage bond 
.NOT. Appendage-bond (bond12) (7) 
$A11 (x) $A11 (y) $A11 (z) 

[ I f Atom (x) .and. Atom (y) .and. Atom (z) .and. 
Alpha (x,y) .and. Alpha (y,z) .and. 
.not. Identity (x,z) then Beta (x,z) ] (8) 

Postulate 8 defines the beta relationship from the alpha 
predicate (alphaCx, y) i s true i f bond(x, y) i s true). The term 
".not. Identity (x,z)" must be included in axiom 8 to prevent an atom 
from being beta to i t s e l f (x=z). 

Definition of Axiomatic Theories. An axiomatic theory i s an 
attempt to formalize an i n t u i t i v e theory. Geometry was i n t u i t i v e 
before Euclid wrote "The Elements". An i n t u i t i v e theory i s defined 
as a body of knowledge which attempts to express relationships and 
causality between objects, but i s not formal. Most modern science i s 
s t i l l i n t u i t i v e , even though i t may represent many of i t 1 s findings 
in exact mathematical formulae. As long as the entire corpus of 
knowledge i s not expressed in a single formal system, i t w i l l remain 
i n t u i t i v e . 

The following l i s t of the steps i s necessary to create an 
Axiomatic Theory: 

1. Provide a set of symbols, and associated defi n i t i o n s . This set 
of symbols w i l l include both objects, and predicate relations. 
Together with the set of symbols defined by the associated 
l o g i c , these w i l l be the only allowed symbols. 

2. Provide a set of axioms (postulates). I f one i s attempting to 
create an axiomatic theory which mirrors experimental r e a l i t y , 
then these axioms should express some fundamental properties of 
the system you are trying to model. 

3. Choose a type of logic to associate with the symbols and 
definitions. This w i l l be used to deduce a l l further 
statements of the theory. This logic w i l l provide at least one 
rule of inference, and rules of combination of truth values. 

4. Any new statement created by the rule of inference upon the 
postulates i s known as a theorem of the theory and may be 
referred to as " v a l i d " or "proved" within the axiomatic 
theory. 

An axiom i s defined as a principle which holds across a l l 
domains of knowledge such as, " i f two objects are equal to a third 
object, then they are equal to each other". Postulates are 
statements which are given without proof, based only on the 
definitions provided before. Euclid called postulates "self-evident 
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truths", and he f e l t that they mirrored some fundamental principle of 
the universe. The idea of postulating an obviously false statement 
such as "two p a r a l l e l lines may intersect at some point" seemed 
useless. However, Bolyai-Lobachevsky geometry does just this and has 
met with success in space time physics, where large bodies can create 
bends in space such that p a r a l l e l lines can intersect. 

In modern axiomatic theory, postulates and axioms are defined 
simply as given statements. By the de f i n i t i o n of an axiomatic theory 
the concept of truth i s not considered relevant to i t s construction. 
If we can derive a theory which seems to mirror r e a l i t y as reported 
by our current experimental knowledge, then we consider the 
postulates to be "successful" in some sense of the word. If the 
theory derived from the postulates clash d r a s t i c a l l y with our 
observations, the postulates can be thrown away as "non-relevant". 
If the differences are s l i g h t , or i f the theory predicts new 
experiments which should show differences from what the i n t u i t i v e 
theory would predict, we can even c a l l the axiomatic theory 
"interesting". 

Why More Systems Haven11 Been Axiomitized. Geometry i s unique i n 
that i t can be expressed in a simple l o g i c , the results are either 
true or false, and that the actual "experiments" were capable of 
being done with thought alone. In chemistry there was not su f f i c i e n t 
knowledge to enumerate the basic definitions and postulates. The 
recent explosion of knowledge in chemistry has made i t feasible to 
begin the process of axiomatization of chemical theories. 

Geometry i s also special in that most examples we wish to reason 
about consist of a few objects, with a limited number of 
relationships. Thus i t i s feasible to use a simpler sentential 
calculus form of logic which cannot reason with variables. 
Sentential calculus can only be used when the t o t a l space of a l l 
statements i s easily numerable, since a l l properties about objects 
and relationships must be stated in separate e x p l i c i t sentences. 

But i n chemistry, where a typ i c a l molecule w i l l have 20 - 30 
atoms, as many bonds, several rings, stereocenters, hetereoatoms, 
etc., a theory expressed in the sentential calculus would require 
thousands of statements. Thus chemistry had to await development of 
the predicate calculus,(14) to axiomatize the theory. 

F i n a l l y , while geometry was axiomatized with bimodal l o g i c , 
chemistry required creation of a new (within l a s t few decades) branch 
of logic r i c h enough in expressive power to manipulate uncertain 
statements without over or understating their value. The next 
section introduces these new logics. 

Bimodal Logic 

There i s a principle of logic called the principle of the "Excluded 
Middle", dating back to Plato. The principle states that "a 
statement i s either True or False". The Heisenberg uncertainty 
principle however forces us to recognize uncertainty as a r e a l i t y . 
Logics capable of expressing statements containing uncertainty are 
now available.(^5) These new logics can be viewed as extensions of 
bimodal log i c . 
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Redefining True, False, and the Value of Connectives, We begin by 
replacing Τ with 1, and F with 0, mapping atomic formula onto the 
range {0,1}. Then the truth value of a formula A i s either 0 or 1 : 

Definition 1: v(A) = 1 "true" 

Definition 2 : v(A) = 0 "false" 

For any wff F, there exists a function v(F), which w i l l map F 
onto the range {0, 1}. We determine v(F) by the following technique: 

1. If F i s an atomic formula, P(x1, ... xn), then we can say that 
Ρ maps the tuple (x1, ... xn) onto the range {0, 1}. This 
mapping i s generally done by e x p l i c i t statement, i . e . 

Socrates is Mortal. 
Mortal(socrates) maps to 1 
v(Mortal(socrates)) = 1 

2. If F i s a composite formula, we define functions which extend 
the values of the terms to the formula. 

Definition 3 : v(A Λ Β) = min ( v(A), v(B) ) 

Definition 4 : v(A ν B) = max ( v(A), v(B) ) 

Definition 5 : v(A => B) = min ( 1, (1-v(A))+v(B) ) 

Definition 6 : v(A <-> B) = min ( v(A), v(B) ) 

Definition 7 : v(~ A) = 1 - v(A) 

We w i l l examine implication (Definition 5) i n d e t a i l because i t 
i s less obvious and quite important to QED. We start by enumerating 
the four possible cases for implication (Table I I ) : 

Table I I . Truth table from Definition 5 for A => B. 

A v(A) Β v(B) min (1, (1-v(a))+v(B)) 
True 1 True 1 1 easel 
True 1 False 0 0 case2 
False 0 True 1 1 case3 
False 0 False 0 1 case4 

Only case 2 has a zero value for the result of the combination 
formula. It i s only when the antecedent A i s true, but the 
conclusion i s false that the rule i s considered to be bad. For 
example, given the rule shown in equation 10, then only i f the 
molecule i s a protein but i t contains no amide i s the rule shown to 
be faulty. If the molecule i s not a protein, the respective truth or 
f a l s i t y of the assertion that i t contains an amide would not affect 
the truth value of the implication. An implication rule sets no 
limi t a t i o n upon the value of Β i f A i s not true, so case3 and case4 
are v a l i d . 
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IF Is-protein(mol) then Contains-amide(mol) (9) 

In summary, the value of an implication rule i s an inverse 
measure of how often the antecedent has a higher value than the 
consequent. This i s very important i n multi-valued logics where the 
truth value ranges over many numbers rather than just 0 and 1. The 
more "valuable" the rule, the more often i t implies the correct 
consequence. 

Lukasiewicz-Tarski Multi-Valued Logic 

In chemistry, uncertainty may arise because we are ignorant of some 
of the underlying principles, or just have not done enough 
experiments yet. The normal two valued logic i s not satisfactory for 
many complex problems, e.g., principles of chemical synthesis. The 
solution i s to add additional values to our logic so that we can 
represent "I don't know." One of the more popular multi-valued 
logics (MVL!s) was created by the Polish logicians, Lukasiewicz and 
Tarski (LT) about 50 years ago.(j1j>) This l o g i c , called LT, i s 
further identified as LT , where η represents the number of discrete 
values that are covered. LT 2 i s the same as the bimodal PC. 

Only small changes are necessary to convert our d e f i n i t i o n of 
the bimodal logic into the LT logic. For a given atomic formula, 
P(x^, ... x n) , we say that Ρ maps the tuple (x^, ... χ ) onto a 
range {0, 1? n-1}, where η i s the order of the LT. Every 
appearance of the number "1" in our previous definitions (1-7) i s 
replaced by "n-1" where η i s the value of the LT. For example, 
Definition 5 i s changed from min (1, (1-v(A))+v(B)) to min ((n-1), 
((n-1)-v(A)) + v(B)). When n=2, the formula i s the same. 

We w i l l i l l u s t r a t e how the LT logic works using the simplest 
l o g i c , LT . The range of LT i s 0, 1, 2. These numbers can be thought 
of as expressing the English terms False/0, Maybe/1, and True/2. The 
rule for e x p l i c i t evaluation would be used to assign values to the 
following examples: 

There i s an atom alpha to atom5. 
v( $Exists χ Alpha(x, atom5) ) = 2 (10) 
There are no atoms which are alpha to themselves. 
v( .NOT. $Exist χ Alpha(x,x) ) = 2 (11) 

Having assigned values to the atomic formulae, the modified 
formulae of definitions 3 through 7 are used to assign values to 
wffs. 

Atom5 i s on a_ ring 
Atom6 might be on a ring 
v(0n-ring(atom5) ) = 2 
v(0n-ring(atom6) ) = 1 (12) 

It might be true that both atom5 and atom6 are on a ring. 
v( 0n-ring(atom5) .AND. 0n-ring(atom6) ) = 
min ( v(A) , v(B) ) = min ( 1, 2 ) = 1 (13) 
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It i s certainly true that at least one of atom5 
or atom6 are on a_ ring. 
v( 0n-ring(atom5) .OR. 0n-ring(atom6)) = 
max ( v(A) f v(B) ) = max ( 1, 2 ) = 2 (14) 

The value of the rule " I f atom5 i s on a r i n g t then 
atom6 i s also on a ring" cannot be established from 
the data at hand. 
v( $A11 x $A11 y (If On-ring(x) then On-ring(y) ) ) = 

max ( n-1 - v(A), v(B) ) = max ( 2-2, 1 ) = 1 (15) 

Lets focus on the implication rule in equation 15. If the rule 
i s considered to be "good" in LT , i t w i l l have a value of 2. Thus i t 
has to be the case that the second term in the valuation formula 
(Definition 5), (n-1 )-v(A)+v(B) must be greater than or equal to 2. 
Table I I I shows the values of Β allowed for given values of A as a 
function of the "goodness" of the rule. If the rule has value 0, 
then any value of Β i s acceptable no matter what the value of A i s . 

Table I I I . Allowed values of Β for A => Β in LT 

v(A) v(A => B) =2 v(A => B) = 1 v(A => B) = 0 
2 2 1, 2 0, 1, 2 
1 1, 2 0, 1, 2 0, 1, 2 
0 0, 1, 2 0, 1, 2 0, 1, 2 

In assigning a value to Β from the possible range of values for 
B, we must select the lowest value, since only t h i s value i s 
supported by the implication, the other values are only p o s s i b i l i t i e s 
that cannot be ruled out. Other implications may infer the 
consequent Β with a higher value. 

Cumulative Evidence. LT does not mirror human i n t u i t i o n about 
accumulation of evidence. Generally i f one has more pieces of 
orthogonal evidence which support a deduction, then there i s more 
reason to believe that the deduction i s true. However, th i s i s not 
the case with LT log i c . For example, consider the following. 

(A1 => B) v=1 (impD 
(A2 => B) v=2 (imp2) 

(A9 => B) v=9 (imp9) 

Assume that we are using LT , and that A1 ... A9 a l l are True 
with v=10. In th i s case, Β w i l l be inferred from each of these rules 
with v=1 to v=9 respectively. Using an LT combining function for two 
values, v1 and v2, we w i l l choose v(B) as max(v1, v2). Thus, only 1 
piece of evidence (imp9) w i l l actually matter, and A1 through A8 
could assume any value from 0 to 10 and not affect the value of B. 

The reader i s recommended to the book by Ackermann(_15_) f° r t n e 

complete expostulation why LT logic uses t h i s combining function. 
Basically LT logic was designed to avoid some of the many 
d i f f i c u l t i e s that arise when applying MVL to mathematical domains. 
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Unlike chemistry, mathematics often deals with i n f i n i t e domains, and 
i n f i n i t e axiom sets. If we allow the fact that two axioms infer the 
same conclusion to increase the truth value of that conclusion, we 
must choose some increment that r e f l e c t s the importance of each 
individual axiom. If there are an i n f i n i t e number of such axioms, 
then each axiom becomes i n f i n i t e s i m a l l y important. Thus LT logic 
chooses to err on the side of conservatism, assuring that the 
conclusions w i l l be v a l i d , though perhaps less strong than they could 
actually be. 

Obviously we should not allow multiple iterations of the same 
rule to increase the value of the consequent. If t h i s were to be 
allowed then one could obtain any f i n a l value by simply re-iterating 
the same rule sufficient times. But redundancies in rules arise i n 
subtle ways, e.g, Β => A and C => A where Β <-> C, i . e , Β i s another 
name for C. F i n a l l y , i t can be shown that even i f the chain of 
relation between Β and C contains l o g i c a l connectives other than <->, 
then allowing two successive inferences to increase the value of the 
consequence above that inferred by the strongest alone can lead to 
problems. 

In chemistry, where the axioms are generated by formalizing 
f i n i t e human experience, i t i s reasonable to allow evidence to 
accumulate and we did in QED. It i s probable that a l l our axioms 
w i l l not be orthogonal. Simple perception concepts are a part of the 
antecedents in many different rules, hence there i s some commonalty. 
Assuring that our rules are orthogonal in a l l of the many possible 
combinations i s a d i f f i c u l t task. 

Incremental Multi-Valued Logic (IMVL) 

We u t i l i z e d in QED a type of MVL which i s similar to a very popular 
form of MVL known as Bayesian Logic. There are several unfortunate 
problems with Bayesian l o g i c , including the fact that Russell showed 
that t h i s logic incorporates several f a t a l paradoxes. Fortunately, 
these paradoxes only manifest themselves in i n f i n i t e systems. There 
are s t i l l problems with f i n i t e systems, such as the a b i l i t y to assign 
unwarranted values to conclusions i f the data base i s aapoorly 
constructed. But there are significant advantages to this l o g i c . 

Once again the logic maps a set of statements onto a range. In 
t h i s case the range w i l l be the rational numbers from -m to +m, where 
-m i s equivalent to False, and +m i s equivalent to True, with 
complete ignorance at 0. 

However, the value of an atomic formula i s comprised of three 
parts, the confirmation value, disconfirmation value, and the 
combined truth value: 

confirmation value CV: 0 =< CV =< +m 
disconfirmation value DV: 0 =< DV = < +m 
truth value, TV = CV - DV: -m =< TV =< +m 

An advantage of carrying CV and DV i s that one can recognize 
from the magnitude of CV and DV the amount of concurrence or c o n f l i c t 
in support of a given inference. 

For any e x p l i c i t assignment of an atomic formula, only the CV or 
DV i s assigned. The TV i s then calculated from that. For the value 
of wffs comprised of assigned terms, the following formulas are used: 

 P
ub

lic
at

io
n 

D
at

e:
 A

pr
il 

30
, 1

98
6 

| d
oi

: 1
0.

10
21

/b
k-

19
86

-0
30

6.
ch

01
7

In Artificial Intelligence Applications in Chemistry; Pierce, T., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1986. 



200 A R T I F I C I A L I N T E L L I G E N C E A P P L I C A T I O N S IN C H E M I S T R Y 

Definition 8: CV ι (Α Λ B) = min ( CV (A), CV (B) ) 

Definition 9: DV < (Α Λ B) = max ( DV (A), DV (B) ) 

Definition 10: TV (Α Λ B) = : CV (Α Λ Β) - DV (Α Λ Β) 

Definition 11: CV (A V B) = : max ( CV (A) f CV(B) ) 

Definition 12: DV (Α ν B) = : min ( DV (A), DV(B) ) 

Definition 13: TV (Α ν B) = : CV (Α ν B) - DV (Α ν B) 

Definition 14: CV ( ~ A) = DV (A) 

Definition 15: DV ( ~ A) = CV (A) 

Definition 16: TV ( ~ A) = CV ( - A) - DV Γ A) 

Definition 17: CV ( A => Β ) = max ( DV (A), CV (B) ) 

Definition 18: DV ( A => Β ) = min ( DV (A), CV (B) ) 

Definition 19: TV ( A => Β ) = CV ( A => Β ) - DV ( A 

While these formulae are more complex than those of the LT, they 
give the same results as do those of LT logic. Two features of the 
IMVL are however quite different from the LT: 1) the rules for 
incrementally acquiring evidence; and 2) the rules for computing the 
value of a consequent of an implication when the antecedent i s not 
f u l l y True. 

Incrementally Acquiring Evidence. Unlike LT l o g i c , the IMVL allows 
successive inferences about a fact to increase the truth value of 
that fact. One way of viewing the way that the IMVL deals with 
inferences i s to say that an inference in support of a theorem 
decreases our ignorance about that theorem. Thus, when the theorem 
i s f i r s t proposed, the ignorance i s maximal, the values for CV, DV, 
and TV are a l l 0. The amount of ignorance about the CV (or DV) could 
be said to be m. 

The f i r s t inference of a theorem with value ν, (v =< m) , then 
reduces our ignorance by v. If the value ν was in confirmation of 
the theorem, then the values become DV = 0, CV = v, and TV = v. We 
have reduced our ignorance about the CV to m-v. Further confirmatory 
evidence for the theorem i s applied to the remaining measure of 
ignorance. The truth value i s calculated from CV and DV as normal. 
The formulae for this are: 

Definition 20: CV(A, given A1, A2) = CV(A1) + CV(A2)*[m -
CV(A1)]/m 

Definition 21: DV(A, given A1, A2) = DV(A1) + DV(A2)*[m -
DV(A1)]/m 
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Definition 22: TV(A, given A1, A2) = CV(A, given A1f A2) -
DV(A, given A1f A2) 

It can be shown that CV and DV approach the maximal value m 
asymptotically and that the order of acquiring truth values does not 
matter. 

Implication i n IMVL. The second major difference i s in how the value 
of the consequent of an implication i s calculated. The method i s 
multiplicative as compared to the minimum function of LT MVL. The 
formulae involved are shown below where TV(A) = TV(A) i f f TV(A) > 0; 
otherwise 0. 

Definition 23: CV (B, when A => B) = TV (A) * TV(A => B)/m 

Definition 24: DV (B, when A => B) = unchanged 

Definition 25: CV (B f when A => ~ B) = unchanged 

Definition 26: DV (B, when A => ~ B) = TV 1(A) * TV(A => ~B)/m 

With this background on the theoretical representation issues, 
we w i l l now b r i e f l y describe the QED program that implemented this 
IMVL PC l o g i c . 

The QED Program 

QED was implemented on the SUMEX-AIM DEC 2060 TOPS-20 system. The 
source code consists of about 18000 lines for FORTRAN code and 1500 
lines of macro code. A block diagram of the program modules i s shown 
in Figure 3. QED i t s e l f contains no chemical information. The 
chemical knowledge i s stored as postulates in a formal f i r s t order 
predicate calculus language. The grammar for t h i s language i s also 
e x p l i c i t l y described in the BNF notation. The PARSER interprets the 
postulates and interaction with the user, both for entering questions 
and also for entering new rules interactively. The QED EXEC handles 
opening of f i l e s , entry of a molecule, and debugging aides. The 
AGENDA EXEC creates, p r i o r i t i z e s , selects, performs, and deletes 
tasks. The INFER EXEC selects rules, examines the data base, 
instantiates predicates and interprets the l o g i c . A l l information, 
including postulates, rules, dictionary, instantiations, tasks, etc., 
i s stored in an associative relational data base. The ANSWER 
EXTRACTER and FORMATTER communicates the answer to a question i n a 
form the chemist can understand and that SECS can understand. The 
design of the system i s very much l i k e the Japanese 5th Generation 
Computer System design which i s also based on l o g i c . 
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USER 

Token Scanner Output Formatter 

PARSER 

TRANSLATOR 

QED 
EXECUTIVE 

AGENDA 
EXECUTIVE i ANSWER 

INFER I EXTRACTION 
EXECUTIVE 

ASSOCIATIVE DATA BASE MANAGER 

ASSOCIATIVE MEMORY 

ν ν ν ν 
DICTIONARY POSTULATES AGENDA ITEMS INFERENCES 

Figure 3. Block diagram of the QED system. 

lASCII —> PARSER —> Parse —> SIMPLIFIER 
rule I tree I I 

grammar 

-> Simple 
tree 

rule in <— OBJECT 
relational form SYNTHESIS 

<— Proper <— SEMANTIC 
tree ANALYZER 

dictionary 

Figure 4. Compilation process for rules. 

QED Rule Parsing 

Since FORTRAN (unlike LISP) cannot easily accept ASCII 
representations of rules and use them d i r e c t l y , they must be read, 
parsed, analyzed and translated to the form QED can interpret. The 
general flow of the compiler i s shown in Figure 4. As an example, 
l e t s follow the processing of the rule "ALPHA-TO-SC" that defines 
sites where stereochemical induction may occur: 

Rule ALPHA-TO-SC 
$A11 Atom(x) $A11 Atom(y) 
[IF Stereocenter(x) .AND. Alpha (x,y) 
THEN Alpha-anisotropic (x)] CF 0.7 
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The rule i s parsed in a top-down fashion(26) using a BNF driven 
parser according to the e x p l i c i t grammar, a portion of which i s shown 
in Figure 5. This i s a f a i r l y simple context free grammar, written i n 
the BNF (Backus Normal Form) style. (J_7) A condensed version of the 
parse tree for the sample rule i s shown in Figure 6. Semantic 
analysis checks for: 

- Recursive rules with identical bindings 
- Unbound variables 
- Variables that are improperly scoped 
- Predicates and functions having the incorrect number of 

arguments 
- Predicates and functions having improper types of arguments 
- Quantifiers incorrectly scoped 
- Predicates and functions incorrectly defined 

Once thi s has been done, the translation to internal form can be 
performed. F i n a l l y the rule i s added to the axiom data base. 

<z> ::= <rule> ';' ; 
<rule> ::= <ruleid> <quants> <implication> <certfact> ; 
<ruleid> ::= ( 'Rule' ! 'rule' ! 'RULE' ) <identifier> ; 
<quants> ::= <quanpair> [ <quants> ] ; 
<implication> ::= ' [ ' <antecedent> <impsymbol> <consequent> ' ] ' ; 
<impsymbol> ::= 'then' ! 'Then' ! 'THEN' ; 
<antecedent> ::= [ ' I f ! 'IF' ] <formula> ; 
<formula> ::= <and-node> ! <or-node> ! <atomicform> ! 

<quanpair> • [ ' <formula> ' ] • ; 
<and-node> ::= ( <atomicform> ! '(' <or-node> ' ) ' ) <and-op> 

( <and-node> ! <atomicform> ! ' ( ' <or-node> ' ) ' ) ; 

Figure 5. A Portion of the BNF Grammar for QED/s language. 

<rule> 
/ 

/ 
<quants><quants><implicationXCF value> 

$A11 
/ 

Atom χ 

$A11 Atom 

/ 
/ 

/ 
y 

\ 
\ 

\ 
CF 0.7 

\ 

Stereocenter y 

<antecedent> <impsymbol> <consequent> 
/ 

/ 
<conjunction> 
/ ! \ 

/ ! \ 
•AND. Alpha 

ι 
! 

THEN 

! 

Alpha-anisotropic χ 

x y 
Figure 6. Simplified parse tree of the ALPHA-TO-SC rule. 
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Associative Relational Data Base 

Everything in QED i s stored in " t r i p l e s " l i k e in the LEAP 
language.08) Each t r i p l e consists of an index, an attribute, and a 
value. QED maintains pointer l i s t s to entries that have the same 
index, attribute, or value so that i t can quickly retrieve relations 
given any combination of I, A, or V. The t r i p l e s are stored in QED*s 
software implemented v i r t u a l memory that i s mapped to disk. The 
internal form of the ALPHA-TO-SC rule i s shown in Table IV. 

Table IV. The internal form of the ALPHA-TO-SC rule. 

Index Attribute Value 

1 isa rule 
1 Rule-id "Alpha-to-SC" 
1 son index # 2 
2 isa quant-description 
2 quantifier $A11 
2 variable "X" 
2 parent index # 1 
2 son index # 3 
3 isa quant-description 
3 quantifier $A11 
3 variable "y" 
3 parent index # 2 
3 son index // 4 
4 isa inference 
4 antecedent-son index # 5 
4 consequent-son index # 6 
4 CF value 0.7 
4 parent index # 3 
5 isa conjunction 
5 formula-son index # 7 
5 formula-son index // 8 
5 parent index # 4 
7 isa atomic-formula 
7 Predicate "Stereocenter" 
7 variable-1 "x" 
7 parent index // 5 
8 isa atomic-formula 
8 Predicate "Alpha" 
8 variable-1 "X" 
8 variable-2 Il y II 
8 parent index # 5 
6 isa atomic-formula 
6 Predicate "alpha-anisotropic" 
6 variable-1 "X" 
6 parent index # 4 

Agenda List Control 

QED puts problems to be solved on the Agenda L i s t . I n i t i a l l y the top 
goal i s the task to find a plan for a molecule. V i t a l information 
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such as task type, task pointer, parent, p r i o r i t y , clock t i c k , item 
depth, and the current unification set with truth values i s stored as 
part of the task, again as associative relations. QED uses 
heuristics to p r i o r i t i z e the tasks by examining the number of terms 
in a rule and the types of connectives and quantifiers and estimating 
the amount of work required to complete the task. Easy tasks and 
tasks which may f a i l early are chosen f i r s t i n order to truncate 
extensive search. We use the agenda l i s t to provide "best f i r s t " 
control. 

Example Rules 

Before we can consider an example application of QED, we need to 
present some of the rules we have developed for stereochemical 
control in chemical synthesis and then see how they are used in 
developing a plan. 

Rule Suggest-control-sc 
$A11 Atom (x) 
[IF Stereocenter (x) THEN Control-sc (x) ] CF 0.8 ; 

Rule Connect-to-control 
$A11 Atom (x) $A11 Atom (y) 
[IF Control-sc (x) .and. Anisotropic (y) 
THEN Connect (x,y) ] CF 0.8 ; 

Rule Connect-apps-for-control 
$A11 Atom(z) $A11 Appendage (y) $A11 Ring (r) 
[IF Root-of-appendage (z,y) .and. 

Control-sc (z) .and. Atom-of-ring (z,r) 
THEN Reconnect-app (y,r) ] CF 0.8 ; 

Rule Suggest-control-sc says simply i f there i s a stereocenter at an 
atom, then i t i s important to control stereochemistry there. 
Connect-to-control t e l l s one way for controlling stereochemistry at a 
center, namely to connect that center to another center that i s 
s t e r i c a l l y differentiated. Connect-app-for-control states that i f 
the center to be controlled i s on a ring and i s the root of an 
appendage, then i t might be a good idea to reconnect the appendage to 
the ring to form a new ring. Currently, QED has rules for 
reconnection of appendages, removal of stereocenters, making 
transannular bonds, breaking appendage bonds, increasing s t e r i c 
hindrance, and using functional groups. 

Example of Analysis 

A very simple dialog with QED w i l l be presented for the target 
molecule shown below: l r ... 
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Appendage 1 consists of atoms 1-4, Appendage2 consists of atoms 
9-12, and Appendage3 = atoms 5, 14-16. The molecule i s i n i t i a l l y 
represented as a standard SECS MOLFILE, i . e . , a connection table. In 
the QED dialog on t h i s problem in Figure 7, the user typing i s shown 
underlined. The eolin command reads the connection table 3app.mol 
then converts the molecule to QED lo g i c a l predicates, e.g., 
Atom(atom3) TV 100; Atom(atom4) TV 100; Bond(atom3, atom4) TV 100; 
Stereocenter(atom4) TV 100; Root-of-appendage(atom4, appendage1) TV 
100; appendageC appendage 1) TV 100; etc. Thus the molecule i s 
represented as a set of premises within QED which are known to be 
completely true. The user then asks QED to infer a plan for a l l 
atoms x. Connecting two atoms Connect(x,y) i s one possible part of a 
plan. 

@QED 
- QED -
For commands type HELP 

QED: molin 3app.mol 
QED: infer 3app-example $A11 Atom (x) Plan (x) 

5 User Infer Request 3app-example Plan 
To Be Instantiated by rule "Planl" 

599 Rule " P l a n l " - Plan 
END OF AGENDA LIST 

QED: Lookup Reconnect-app-app 
appendagel, appendage2, 75 
appendage2, appendagel, 75 

QED: Lookup Reconnect-app 
appendagel, atom10, 67 
appendagel, atom5, 56 

QED: Lookup Connect 
atom2, atom11, 60 
atoml, atom5. 50 

QED: What Rule Infers Connect 
Rule "where-to-reconn" 

QED: Show rule where-to-reconn 
(rule i s printed out) 

QED: Lookup Stereo-center 
I don't know the word "Stereo-center" 
Please choose one of the following 
0) None of the following 
1) Stereocenter 
:: 1 
atom9, 100 
atom4, 100 

QED: Quit 
Thus i t i s shown. 

Figure 7. Sample QED dialog. 
To summarize the example, in a l l cases, the non-stereo 

appendage, appendage3, was not u t i l i z e d for reconnection. The truth 
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values for reconnecting appendagel to appendage2 was 75, and because 
of symmetry of reconnection, appendage2 to appendagel i s also 75. 
Reconnection of the appendage to ring atoms: for connection to 
stereocenter, TV = 72; for connection alpha to stereocenter, TV = 56; 
for connection beta to stereocenter, TV = 50. We w i l l present the 
chemical significance of some QED analyses separately elsewhere. 

Conclusion 

The multi-valued predicate calculus logic as implemented in QED has 
been demonstrated to be suitable for cleanly representing strategic 
axioms of chemical synthesis. QED i s a powerful tool for exploring 
inference in the planning of synthesis strategies. QED helped us 
elucidate key strategic concepts and their interdependence and 
enabled us to create a consistent rule base. The c l a r i t y of the QED 
PC language allows anyone to easily read and understand the strategic 
principles and may encourage further axiomatization work by others. 
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A S e l f - O r g a n i z e d K n o w l e d g e B a s e 

f o r R e c a l l , D e s i g n , and Discovery in O r g a n i c C h e m i s t r y 

Craig S. Wilcox1 and Robert A. Levinson2,3 

1Department of Chemistry, University of Texas at Austin, Austin, TX 78712 
2 Department of Computer Science, University of Texas at Austin, Austin, TX 78712 

The design and operation of a system which forms 
generalizations about organic chemical reactions and 
structures and uses these generalizations to organize the 
reactions and structures for efficient retrieval and to 
generate precursors to a given target molecule is 
presented. Approaches to computer based classificatory 
concept formation and organization are discussed. A new 
linear notation for organic reactions is described. 

The complex professional tasks accomplished by organic chemists are 
an intriguing example of in t e l l i g e n t human a c t i v i t y . Organic 
chemists organize and r e c a l l a vast amount of information. In 
ascending order of complexity, the knowledge created and used by the 
organic chemist consists of individual observations, conceptual 
schemes and generalizations which organize this factual knowledge 
base, and, most importantly, procedures which describe how to use 
these facts and conceptual schemes to solve a given problem. We are 
interested in the ways in which information is organized and used for 
problem solving. 

Our objective is to design machines which w i l l encode reactions 
and structures, w i l l automatically create generalizations based on 
these data, and w i l l use these generalizations to organize the data 
and to solve the problem of precursor generation. Organic chemists 
often use structural features to c l a s s i f y reactions. The capacity to 
conceptualize i s an indispensable aspect of intelligence. We wished 
to determine whether a computer, given a large number of structures 
or reactions and a small set of rules, can create useful 
generalizations. In designing such a program, we have faced a number 
of interesting issues concerning conceptualization i n organic 
chemistry. 

Organic chemistry i s a unique theater for AI research because 
over the past 150 years organic chemists have created a powerful 
graphical knowledge representation scheme. This representation 

3 Current address: Board of Studies in Computer Science, University of California, Santa 
Cruz, CA 95064 

0097-6156/ 86/ 0306-0209S06.25/ 0 
© 1986 American Chemical Society 
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method is the second language of a l l organic chemists and supports 
tasks ranging from mundane r e c a l l of a specific datum to the 
generation of highly complex, creative proposals for multi-step 
syntheses of previously unknown molecules. Computer science and 
organic chemistry have been in comfortable collaboration for the past 
25 years.(1-7) A number of important programs have been developed in 
that time. The DENDRAL project influenced AI research in 
far-reaching ways.(8) Organic chemistry is an enticing arena for AI 
research because to a limited but important extent, in the microworld 
of the organic chemist, the problem of how to represent knowledge has 
been solved. The graphical language shared by a l l organic chemists 
for over a century i s a remarkably sophisticated knowledge 
representation scheme which i s easily adapted to contemporary 
techniques in computer science. The organic chemist does use many 
concepts (electronegativity, insights from quantum theory, and 
spatial relationships between molecular components) which are absent 
or are i n d i r e c t l y encoded in his graphical notation. Nevertheless, a 
substantial amount of knowledge at the factual l e v e l , and a useful 
number of higher level concepts, can be expressed as connected 
graphs. 

Consider the following l i s t : functional groups, the aldol 
reaction, the Paterno-Buchi reaction, carbon-carbon bond formation, 
ene reaction, esters, alkenes, elimination, enamines, Claisen 
rearrangement, a l l y l i c alcohols, halogenation. These words describe 
just a few general categories used by chemists to c l a s s i f y reactions 
or structures. These categories, some in use for over 100 years, can 
be described using organic stuctural formulae and find daily use in 
cl a s s i f y i n g chemical facte. Computer systems have used such 
generalizations (provided by chemists) to guide data organization, 
r e c a l l , and planning. 

The benefits of o r i g i n a l machine calculated generalizations w i l l 
be realized when capable conceptualizing programs are available. I t 
w i l l be shown here that, given structures and reactions and a simple 
set of instructions, a computer can indeed discover generalizations, 
some of which are equal to the categorizations used by chemists. 
While the fact that some discoveries are very similar to known 
categories is interesting, i t is more important that the computer can 
also discover patterns previously unknown to chemists. 

In this program the generalizations about reactions and 
structures which are discovered by the system are used very much as 
man-made generalizations have been used. They organize the data, 
they are used during the r e c a l l procedure, and they are used to 
generate precursors to target structures. We hypothesize that 
because only a few chemistry specific heuristics are used in the 
generalization algorithm, this system w i l l have more creative 
potential than systems which are more r i g i d l y constructed from many 
special rules based on detailed chemical knowledge. In current 
system the answers provided to the precursor generation problem are 
naive because we have not yet incorporated a heuristic based module 
to guide precursor selection. Here, as in a c h i l d , however, this 
naivety i s accompanied by the potential to suggest fresh approaches 
to solving a problem. The answers are not directed to conform to a 
concensus view of correctness. We seek a system of answering 
questions, but not a system which provides only expected answers. 

The f i r s t part of this paper provides an overview of what the 
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program does and how i t works. We present an approach to 
representing both structures and reactions as single connected 
graphs. We w i l l refer to a l l such labelled graphs as structural 
concepts or simply as concepts. Structural concepts range from the 
very general (carbon-carbon single bonds, carbon-oxygen double bonds) 
through intermediate size and generality (the aldol reaction, the 
pyran ring) up to the most complex real-world instances of molecules 
or reactions. By virtue of the graph representation scheme, 
reactions and structures, both real and abstract, may be stored in a 
single data base. 

This system d i f f e r s i n several ways from other approaches to 
organic chemistry data base organization. The data organization of 
this system is based on machine generated structural concepts rather 
than pre-determined screens. The rules which guide the 
generalization process w i l l be detailed. The data is heirarchically 
self-organized, i n a p a r t i a l ordering proceeding from the smallest, 
most general structural concepts (primitives) to the largest and most 
specific structures or reactions. The generalizations that are 
created aid r e t r i e v a l and are used in precursor generation. 

The idea of a heirarchical organization of knowledge has history 
far predating computer science.(9) ( Consider for example the arbor 
porphyriana, a "tree of concepts" proposed by Porphyry in the 3rd 
century A.D. ) We recognize that the heirachical organization and 
manipulation of graphs is a general approach to knowledge processing 
and should find application outside of organic chemistry. 

In the second part of the paper examples of the system i n action 
w i l l be given. We feel that because our system uses clearly defined 
rules for creating generalizations, i t may offer fresh insights and 
solutions to problems. Rules for generalization can be 
systematically modified. The question of how such modifications 
affect the problem solving capabilities of the system is unanswered. 

An appendix i s provided and details the new techniques used i n 
this program. An e f f i c i e n t algorithm based on a p a r t i a l ordering 
allows the r e c a l l of subgraphs, supergraphs and close-matches for any 
query graph. Some comparisons w i l l be made of this algorithm with 
previously used screen approaches for graph r e t r i e v a l . 

Overview of the System 

Reaction Representation. From the outset, this project was shaped by 
the graphical form of tra d i t i o n a l organic reaction representations: 

Li-0 ^ 
8 ι Ρ ο 

y K • ^ 

Reactions are invariably written this way, and obviously have a l e f t 
hand side and a right hand side. To the beginning organic student, 
this format naturally suggests a "before and after" or "cause and 
effect" perception of reactions. "If the starting material i s 
treated in this way, then the product w i l l result." This perception 
has influenced the design of some computer programs. Reactions have 
been represented either as two related structures or as one structure 
and a set of changes required to produce the other structure. 
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To simplify comparisons between reactions, we sought to describe 
entire reactions as a single labeled graph. Just as cause and effect 
can be considered either as two separate events or as a unified 
process, changing with time, so a reaction can be perceived as two 
structures, as shown above, or as a single assembly of nuclei 
connected by bonds which change with time. The aldol-type reaction 
just i l l u s t r a t e d can be rewritten as follows: 

Note that bonds which are invariant with time are represented in 
the usual way. The dotted lines represent bonds which change over 
the time course of the reaction event. Each changed-bond is labeled 
to indicate i t s bond order before and after the reaction. Obviously, 
the unchanging bonds can also be labeled in an identical fashion. 
(For example, "1:1" would represent an unchanged single bond.) A 
second example of this representation i s i l l u s t r a t e d i n Figure 1. 

These formulae are unorthodox only because they contain unusual 
types of bonds, bonds which change with time. It is this same 
feature which makes the formulae very useful. The single formulae 
represent entire reactions and can be stored or manipulated using any 
of the methods already devised for the storage of static structures. 
We have chosen to use a bond-centered approach to encoding these 
graphs. The smallest structural unit is the atom-bond-atom fragment, 
and w i l l be referred to as a primitive. Connected networks of these 
atom-bond-atom fragments define a molecule or a reaction. These 
networks of primitives are node labeled connected graphs and can be 
represented as adjacency tables wherein the nodes are labeled with 
numbers corresponding to primitives. F i n a l l y , these adjacency tables 
are stored in f i l e s as LISP l i s t s and reside in core as arrays. 
Steps followed in thç translation of a reaction into a LISP l i s t 
structure are i l l u s t r a t e d i n Figure 1. 

Reaction Generalizations Based on Specific Observations. Organic 
chemists have long sought to organize their observations. Reactions 
represented as connected graphs can be formed into groups on the 
basis of common substructures (subgraphs) shared by a l l the members 
of the group. These substructures (subgraphs) are structural 
concepts which are more general than the specific reactions from 
which they are derived. These structural concepts help to organize 
the large numbers of known reactions. 

Structural concepts derived from examples of real-world 
reactions may have the form of a normal reaction but are not 
necessarily good reactions as formulated. For example, most organic 
chemists would recognize the following as the generic form of the 
Diels-Alder reaction but few chemists expect this exact reaction to 
afford a high y i e l d . 

:12 
.Ν 
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(c=:-c1-:»c:-c2=:-c3:-),c2-c4-o-c5-c3,c4»o,c5«o,c1-i. (b) 

9 

C-C01 

NODE * CONCEPT* ADJACENCIES 

1 1KC-F11) 2.12 
2 6(C-C12) 1.3,12 
3 5<C-C21) 2.4 
4 2 Î C - C 0 1 ) 5,13 
5 KC-C11) 4.6,7.13 
6 9 Î C - 0 2 2 ) 5,7 
7 16(C-011) 5.6.8 
8 16 7,9,10 
9 9 8.10 
10 1 8,9,11.13 
11 2 10,12,13 
12 5 1.2,11 
13 S 4.5.10,11 

Lia Hat structure; 

(13(11 2 12X6 13 12) (524) (25 13)(1 4 6 7 13) (957) 
(16 5 6 8) (16 7 9 10) (9 8 10) (1 8 9 11 13) (2 10 12 13) <e) 
(5 12 10 (545 10 11)) 

Figure 1. Five representations of the same chemical information. 
The canonical chemical reaction graph (a) can be represented i n 
linear notation (b, see Appendix) or as a bond-centered labeled 
graph (c) by using time-variant bonds. The labeled graph affords 
an adjacency table (d) and a LISP l i s t representation (e). 
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To imitate this t r a d i t i o n a l and human process of generalization, 
we use substructure discovery to create general concepts which 
organize our data base. This mechanical generalization occurs 
whenever a new reaction is entered into the data base and is 
accomplished in two stages. 

F i r s t , for each new reaction (R) added, two generalizations, one 
very general and one very spe c i f i c , are calculated. These 
generalizations (subgraphs) of R w i l l be referred to as the minimum 
reaction concept (MXC(R)) and the complete reaction concept (CXC(R)), 
respectively, and are defined as follows: 

MXC(R): A graph which is equal to the smallest 
connected-subgraph of reaction R which contains 
a l l the changed bonds in that reaction. 

CXC(R): A graph made by i n i t i a l i z i n g a set C equal to a l l 
bonds in the MXC(R), adding to C a l l bonds 
adjacent to C, and then continuing to add to C 
a l l bonds which are not carbon-carbon single 
bonds and which are adjacent to C u n t i l this i s 
no longer possible. 

The relationship between a reaction and i t s MXC and CXC i s more 
clea r l y i l l u s t r a t e d in Figure 2. The MXC i s a very general statement 
about a specific reaction. The CXC i s a very specific 
"generalization" of that reaction. The value of the MXC i s that i t 
helps to organize the data base and i t w i l l be used later during 
r e t r i e v a l and comparisons of reactions, and i t i s used i n the 
precursor generation algorithm. The MXC w i l l not contain everything 
that is necessary for the reaction to proceed. The value of the CXC 
is that i t w i l l very l i k e l y contain everything required for a 
successful reaction. The expected yi e l d of the reaction represented 
by the CXC i s l i k e l y to approach or even exceed the y i e l d of the 
o r i g i n a l reaction. Obviously the CXC contains much more than is 
necessary for the reaction. An organic chemist, i f asked to define 
what was essential to the success of the or i g i n a l reaction, would 
probably define a subgraph larger than the MXC and smaller than the 
CXC. 

The f i r s t stage of generalization begins, then, with calculating 
the MXC and CXC of a reaction and adding those graphs to the data 
base. A very simple heuristic used here is that generalizations 
about reactions w i l l be subgraphs of reactions and w i l l contain a l l 
the changed bonds of the reactions. The reaction i t s e l f i s next 
added, and during that process previously known reactions which are 
similar to the new reaction are ide n t i f i e d . 

The second stage of generalization begins with this l i s t of 
similar reactions. If a reaction (RR) on this l i s t contains MXC(R), 
(that i s , i t has the same MXC as the o r i g i n a l reaction, R), we 
calculate the largest common subgraph of R and RR which contains 
MXC(R). This new graph is a specific plausible generalization formed 
by comparing R and RR. This process results i n identifying 
interesting reaction subgraphs of a size larger than an MXC and 
smaller than a CXC. An example of the effects of these algorithms 
for creating generalizations is i l l u s t r a t e d in Figure 3. 
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ID 

121 

131 

14) 

151 

Figure 3. When a reaction (1) i s added to the data base i t s MXC 
(2) and CXC (3) are also added. The reaction i s then compared 
with other reactions (4) and a maximum common subgraph (5) i s 
added. 
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Calculating Generalization V a l i d i t i e s . The knowledge base consists 
of a large number of structures and reactions from the real world and 
an even larger number of structures or transforms which are 
calculated based on these ori g i n a l data. These calculated graphs are 
generalizations based on the known reactions. 

If these generalizations are to be used for problem solving, 
then their v a l i d i t y is an important issue. By v a l i d i t y we mean the 
probability that the exact reaction represented by the generalization 
would work. If the generalization was considered as a reaction, what 
would be the yield of that reaction? 

Measuring the v a l i d i t y of these generalizations is important 
because they are machine generated. In systems which use human 
generalizations about reactions to generate precursors estimated 
yields or r e l i a b i l i t y factors are provided for each generalization. 
Our system seeks to automate this approach to machine intelligence 
and a calculational approach to the r e l i a b i l i t y of generalizations is 
required. 

The estimation of one type of v a l i d i t y is a task faced by 
organic chemists every day. In the process of reviewing research 
grants, experts must predict whether proposed reactions, hitherto 
unknown, w i l l succeed. To make this judgement, the expert r e l i e s in 
part on precedent. Previously observed reactions similar to the 
proposed reaction lend credence to the proposal. If many reactions 
(very similar to be proposed reaction) are known to proceed i n high 
y i e l d , the v a l i d i t y or l i k e l y y i eld of the new reaction is high. If 
similar reactions are known to give low yields, then the proposed 
transform is of low v a l i d i t y . 

Before precedent can be used to estimate v a l i d i t y , the meaning 
of "similar" (as i t is applied to reactions) must be defined. I t is 
not surprising that problems of conceptualization and s i m i l a r i t y 
arise in the same project. Philosophers have long recognized the 
complexity and interdependence of comparison and concept formation. 
What makes one reaction a better precedent than another? Can 
s i m i l a r i t y be quantified and i f so can the s i m i l a r i t y of a reaction 
and a proposed transform be quantified? The ways in which reactions 
are similar or dissimilar and the prediction of yields based on 
precedent are important questions which deserve further study. 

At present, we calculate transform v a l i d i t i e s (estimated yields) 
for a generalization or an unknown reaction as follows. 

Let TV(i) = transform v a l i d i t y of i . 
Let A(i) = chemical r e a c t i v i t y of i . 

Currently chemical r e a c t i v i t y is equal to the number of bonds 
which are not carbon-carbon single bonds. This is a crude approach 
to estimating the potential r e a c t i v i t y of i . We wish to calculate 
TV(r) for a newly discovered transform r based on reactions of 
precedent. Let IS(r) = the set of known transforms upon which the 
v a l i d i t y of r is to be based, then: 
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i ? i S ( r ) C W ( 1 ) 2 

TV(r) = (2) 

i Î s ( r ) C W ( i> 
CW(i) i s the closeness ( s i m i l a r i t y ) weighted v a l i d i t y of 

transform i with respect to the new transform r. If the denominator 
i n Equation 2 i s 0, TV(r) i s 0. The constant a determines the 
magnitude of the effect of closeness A(r)/A(i) on the calculated 
transform v a l i d i t y . 

Equations 1 and 2 were intended to produce the following 
results. I f there are a large number of reactive bonds i n the 
precedent not i n the proposed transform, the closeness weighted 
v a l i d i t y of the precedent i s small. If there be the same number of 
reactive bonds in both reactions, the closeness weighted v a l i d i t y of 
the precedent i s equal to i t s yi e l d or known v a l i d i t y . This i s an 
attempt to encompass the idea that i f the precedent has r e a c t i v i t y 
similar to the proposed transform, the proposed transform i s l i k e l y 
to work as well as the precedent. I f the precedent and the proposed 
transform are very different, the precedent i s not helpful. A 
weighted average of the closeness weighted v a l i d i t i e s of the 
precedents provides the estimated yield for the new transform. The 
weighting procedure favors close precedents of high y i e l d . This 
follows from the chemist's usual optimism: i f there are several 
equivalent good precedents, some of high yi e l d and some of low y i e l d , 
the proposed transform is judged to have a good chance. 

The comparison of "numbers of reactive bonds" crudely measures 
s i m i l a r i t y . A more appropriate but complex approach would evaluate 
s i m i l a r i t y in terms of known functional groups or discovered reactive 
substructures shared or not shared by two reactions. Both these 
approaches to v a l i d i t y estimation are limited because they are 
entirely based on structure. The expert w i l l use other factors, 
including theoretical considerations, to refine v a l i d i t y . 

V a l i d i t y aids the precursor generation task in a unique way. 
V a l i d i t y can be used to identify situations in which a particular 
reaction i s not applicable. (Most structures have v a l i d i t y =* 100, 
but some, l i k e Bredt's rule v i o l a t o r s , would have a lower v a l i d i t y . ) 
Reactions of very low (predicted or known) yi e l d or impractical 
structures are called "negative instances". Mitchell uses negative 
instances i n the learning process to rule out otherwise plausible 
generalizations.(12) We use v a l i d i t y to define a continuum from the 
most positive to the most negative instances. The mechanism for 
precursor generation then automatically uses these negative instances 
(structures or reactions of low v a l i d i t y ) to block the use of good 
generalizations i n specific invalidating situations.(13) 

A l l the generalizations calculated from a set of known reactions 
are assigned a v a l i d i t y ( r e l i a b i l i t y factor) based on ( i ) how much 
these subgraphs deviate from the known reactions from which they are 
derived and ( i i ) the known yields of these known reactions. This 
primitive method of predicting yields based on precedent serves to 
i l l u s t r a t e challenges to be met i f machines are to acquire r e l i a b l e 
chemical judgement independent of, but consistent with, an expert's 
evaluations. The v a l i d i t i e s calculated here are used to guide the 
precursor generation task and provide a means of evaluating proposed 
precursors. 
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The System in Action 

Interactive Sessions. The system has been implemented i n LISP (Franz 
Lisp) and Is running on a D i g i t a l Corporation VAX 11/780 at the 
University of Texas. Interactive sessions with the system are 
i l l u s t r a t e d i n Figures 4-7. (During the development stages of this 
project a linear notation was created for reaction input and output. 
A brief description of this notation i s provided i n the Appendix.) 

The figures are annotated and l i t t l e additional comment is 
required. Figure 4 i l l u s t r a t e s r e t r i e v a l of a structure and i t s 
supergraphs and subgraphs. Figure 5 i l l u s t r a t e s reaction r e t r i e v a l . 

The system i s able to use i t s knowledge to generate precursors 
to a target molecule. Two examples are shown (Figures 6 and 7). At 
present, the program compares known reactions and generalizations 
based on known reactions to the target and chooses to apply reactions 
which have the most reactive bonds in common with the target. The 
result is that precursors are suggested with l i t t l e sophistication. 
In fairness, i t should be emphasized that the data base was generated 
from only about 230 reactions, and no generalizing concepts were 
provided by the operators. We look forward to testing the system 
when i t has acquired more knowledge. 

Conclusions 

The system described in this paper stores and retrieves reactions and 
structures, creates generalizations which further organize the 
knowledge base, estimates the v a l i d i t y of these generalizations, and 
uses both specific reactions and machine derived generalizations to 
generate precursors. We have shown that the representation of 
reactions as single labeled graphs is possible based on the idea of a 
bond which changes during a reaction and this graph representation 
simplifies the machine driven act of induction. Concepts are 
generated automatically and these concepts organize the data base, 
aid i n the r e t r i e v a l , and support the precursor-generation 
capabilities of the system. A method for calculating the v a l i d i t i e s 
of a given generalization has been devised and methods of refining 
these calculations have been id e n t i f i e d . 

This study examined some unexplored aspects of conceptualization 
in organic chemistry. How are c l a s s i f i c a t o r y concepts created? Can 
the value of a generalization be quantified? Although here these 
questions are presented in relation to organic chemistry, they are i n 
fact basic questions of epistemology and go beyond organic 
chemistry.(9) 

This program makes generalizations about real-world reactions 
and uses these generalizations to generate precursors. Mitchell's 
approach to conceptualization requires an "instance language" to 
represent observations, a "generalization language" to create 
concepts, and a "matching predicate" to associate observations with 
generalizations.(12,23) Our approach to generalization i n organic 
chemistry r e l i e s on a bond-centered labeled graph representations of 
reactions and structures (observations). In this language 
"more-general-than" i s defined as equivalent to "subgraph-of". We 
take advantage of the fact that in organic chemistry the instance 
language and the generalization language are i d e n t i c a l , and matching 
predicates are based on graph comparisons. 
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The system is now ready to process your requests. 
There are 1230 concepts. 

What would you like to do? 
1 - Change the database. 
2 = Ask a question. 
3 = Go to lisp level input. 
4 » Save changes. 
5- Quit 
2 
wttich of the following do you need help with? 
1 « Structure or reaction retrieval. 
2 » Finding a precursor. 
3 = Finding a postcursor. 
4 « A multistep synthesis. 
5 » Return to previous menu. 
/ 
Initiating a query... 
Please enter the list of classes: 

(s) 

Please enter the legal substitutions: 
nil 

Type in the structure please: 

(c I -c -c -c -c -c -), cl*o. 

Searching data-base of graphs... 

Exact matches: (282) 

( comments] 

Iteveral options axe m l table. 

I the user if interested in asking 
la question about the database. 

(structure retrieval or reaction 
[retrieval are possible. 
I the ays test asks for a list of 
(data types which will restrict 
Ithe search. We choose to 
(search only structures. 

I no substitutions are allowed 
I The user enters the following 
Structure using a mnemonic system: 

(graphic input is not yet available. 

Ithe query structure is known. 

ο 

Ô 

Subgraphs: (4 7 16 49 63 69 86 88 102 137 282 306 539) 

Supergraphs: (196 282 296 432 436 484 509 510 515 526 668 669 670 677 678 682 683 684 766 
815 816 817 819 828 829 830 831 987 989 991 1164 1183 1192 1193 1194 1225 1226 1227) 

Close matches: nil 

Number of concepts searched: 16 

Number of complete node-by-node searches required: 15 

(by convention, since supergraphs were 
I found, close matches are not sought. 
116 concepts were examined to 
jfind the 51 sutches shown above. 

|a complete subgraph isomorphism 
(test was required on 13 concepts. 

Going to lisp level input. 
To return to this menu type XhiT 

-> (show 539) 
C1-C2-C3.. 
-> (show 306) 
C1-C2-<:3-C4-C5-C6.C3=07.. 
-> (show 484) |a super graph is viewed. 

(C1 -C2-C3-C4-C5-C6-),C7-C3-C2-C 1 -012.C8-C2-C9-C 10-C 11.. 

|The user asks to view two sub-
(graphs. Eventually, graphical output 
Iwill be possible. 

F i g u r e 4. S t r u c t u r a l r e t r i e v a l . Responses provided by the user 
are i n i t a l i c s . Annotat ions are i n s e r t e d on the r i g h t . 
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What would you like to do? 
1 • Change the database. 
2 * Ask a question. 
3 = Go to lisp level input. 
A = Save changes 
5 = Quit 

2 
Initiating a query... 
Please enter the list of classes. libit time we are interested in 

(r) 
(only reactions. 

Please enter the legal substitutions: 

nil I no substitutions are allowed 

Type in the structure please: (the user wants to see reactions 
(which form c-c bonds at the alpha 

(c I -c2-c-c-c-c-),c1-o,c2:-c. Icarbon in cyclohexanone: 

Searching data-base of graphs... 

Exact matches: nil Ithe exact reaction is not in the data 
(bue. 

Subgraphs: nil |no known subgraphs. 

Supergraphs: (667 681 826 1224) If our known reactions are supergraphs 
Ιοί the query. 

Close matches: ((508 7) (814 7) (676 7) (136 4) (1063 3) (105 3) (1057 2) (359 2)) 
{concept 50S. for example, has a 7 bond 

Number of concepts searched: 21 Isubgraph in common with the query. 

Number of complete node-by-node searches required: 19 

Would you like to add the structure as a new concept? (y-yes) 
no (this is one way in which the system 

(can learn new concepts 
J 
Going to lisp level input. 
To return to this menu type (hi Τ 
-> (show 826) Ithe user now examinee some 

laupergrapha of the query. 
(C1-C2-C3-C4-C5-C6-).(C12+C13+C14+C15+C16+C17* ),07-C 1 -C6-C8.C6 :-C9= :-C 10-C11 -C12.C 1 
1=018.. 

U Η Ο Ο 

-> (com 826)(Ύ ( Q j l l [ T j S > S [ Ô ] lc«w»em« include bibliographie 
^ ^ ^ ^ (information. Yields are stored 

(House, H. 0. "Modem Synthetic Methods", pp 595-6 Un a separate file. 

-> (show 1224) 
(C 1 -C2-C3-C4-C5-C6-),(C2-C3-C 10-C 11-N12-C13 :-).07=C 1-C2 :-C 13 :-N 12-C15.C 1 -C6-C8.C6-C9 
,C13=:014,. o 0 

•> (com ,224) 
(Corey . E J.. étal J. Amer.Chem.Soc. 1974. 96.6516) 

Figure 5. Reaction r e t r i e v a l . 
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222 ARTIFICIAL INTELLIGENCE APPLICATIONS IN CHEMISTRY 

What is the target molecule? 
Type in the structure please: Ithe target: ^ 

(c 1 -c2-c3-c-c-c-c7-c-), c 1*o, c2-c-c-c, c3-c7. CO-
Adding concept... 
Searching data-base of graphs... 
The concept is 1231. 

The following precursors are suggested: 
• reaction validity size 

1 1216 83 13 
2 11 61 13 
3 236 56 14 
4 193 56 13 
5 27 A} 13 

Ithe system temporarily adds the target 
(to the data base. In this way known 
(subgraphs of the target are found together 
Iwith the reactions that will produce theei. 
I these reactions are then used to generate 
(precursors. 

Ithe table gives five precursors, the 
(concept used to generate the precurter is 
jehewn with the transform validity of this 
(application (see text), the last column 
(gives the number of bonds in a precursor. 

The precursors are on list pre'. Ithe veer new views the first three 

-> (view pro 1) 
(C1<2-C3-C7-œ-)XC3<4<5-C6-C7- ) ,C3-C2-012-C11-C1CX9. . =rv 

a y 
-> (view pre 2) 

(C1 ̂ 2-<^7<cVWC3^4-C5-C6-C7-).C3-C2-C\< 12.C2-C9-C 1(K 11 

-> (view pr$ 3) 
(C1^^3^7<8-).(C3<4<5^6^7-)/3^ -> (show 1216) (this is thee 
(C 1-M3-:-C3:-C6-:-C5MM-:).C5-O7. (to suggest the first precursor: 
-> (up 12f6) 
(1219) 
-> (up 1219) 
(1210) 
-> (com 1210) 
(Dsot)enW6J Org Chem 1972 37 1212) (the reference and a reaction from which 
-> (show 1210) (thai 

- c 

<C1-<2<3-:<4^<W1<HXC5<6<7-Ce>^ 
5-C16.. lean easily be found. 

^OCM3 ^ • M 0 C H3 

Figure 6. Precursor generation. Note that overall transforms 
may be encoded and applied without res t r i c t i o n s as to the actual 
mechanism. 
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What is the target molecule? 
Type in the structure please: 

(c 1 -c2-c3-c-c-c-). cï»o, c3~o, c2-c-c-c *n. 

Adding concept... 
Searching data-base of graphs... 
The new concept is added: 1232 

The following precursors are suggested: 

• reaction validity size 

1 441 77 14 
2 11 76 11 
3 425 36 13 
4 300 20 13 

The precursors are on list 'pre'. 

(as in Figure 7. the target is first added 
(to the data base, subgraphs ef the target 
(are identified and reactions known te 
Igenerate such subgraphs are applied in a 
Iretresynthetic sense to the target. 

Ithe user now views three of the 

6olng to lisp level input. 

-> (vf§w pr$ 1) 
07<3-C4-CT-C6-C2<1-<»-C9-C10»N11.C2-N13-<:i2.C3-ai5>l13-C14.. 

la very 
-> (view pro 2) 
(C1-C2-C3-).(C1-C2-C3-C4-C5-C6-).C2-C7-C8-C9*N10.. 

-> (view pre 3) 
(C1-C2^3-MC1^^3-C4- (^6-^ 

Figure 7. The capac i ty to genera l i ze from s p e c i f i c fac t s i s 
revealed by the systems a b i l i t y to provide these p r e c u r s o r s . 
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Following the seminal work of Corey and Wipke, elegant and 
powerful programs have been developed to aid the synthetic organic 
chemist. These programs use man-made generalizations and special 
heuristics to guide the computer to the solution of complex problems. 
This project complements these e a r l i e r and ongoing efforts. The 
l i m i t s and u t i l i t y of machine-made generalizations are our central 
interest. 

Acknowledgments 

Enlightening conversations with Dr. Elaine Rich (Department of 
Computer Science, University of Texas) are gratefully acknowledged. 
Mr. James Wells wrote the Pascal programs which allow input and 
output v i a mnemonic strings of characters. This research was 
sponsored in part by the Robert A. Welch Foundation, Research 
Corporation, and NSF (MCS-8122039). Additional support was provided 
by a National Science Foundation Graduate Fellowship to RAL. 

APPENDIX 

Data Organization and Retrieval 

A new data base organization for storing and retrieving organic 
structures was created for this project. Although this r e t r i e v a l 
system i s applied here to chemistry, i t is written in a general 
manner and is applicable to other graph-based domains. The 
organization is based on a p a r t i a l ordering of graphs by the ordering 
relation f ,subgraph-of M. A simple yet powerful r e t r i e v a l algorithm 
has been developed to accompany the p a r t i a l ordering. These methods 
offer an alternative to the scheme used by most r e t r i e v a l systems -
the screen approach. 

The P a r t i a l Ordering. Labeled graphs stored in this data base w i l l 
be referred to as concepts because they represent structural features 
that are useful to consider when reasoning about molecules and 
reactions. Both molecules and reactions are represented as labeled 
graphs. Those graphs that represent known molecules and reactions 
s i t near the top of the p a r t i a l ordering. Primitives (the single 
node graphs that represent bonds) form the lowest level of the 
p a r t i a l ordering. As the system evolves, intermediate concepts are 
created. These concepts usually represent p a r t i a l structures (such 
as functional groups) or reaction generalizations. The intermediate 
concepts are discovered (constructed) by the system to improve 
r e t r i e v a l efficiency and precursor generation. Figure 8 shows a 
simple p a r t i a l ordering. Notice that the concepts in the p a r t i a l 
ordering can be viewed as forming a continuum from general concepts 
to more specific concepts. 

The Retrieval Algorithm. The r e t r i e v a l algorithm e f f i c i e n t l y t e l l s 
the system user how a new concept relates to a l l other known 
concepts. The algorithm solves the following basic problem: Given 
an element G and a p a r t i a l ordering return the following four sets: 

 P
ub

lic
at

io
n 

D
at

e:
 A

pr
il 

30
, 1

98
6 

| d
oi

: 1
0.

10
21

/b
k-

19
86

-0
30

6.
ch

01
8

In Artificial Intelligence Applications in Chemistry; Pierce, T., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1986. 



18. WILCOX AND LEVINSON A Self-Organized Knowledge Base 225 

F i g u r e 8. A s i m p l i f i e d view of the p a r t i a l o r d e r i n g . A t y p i c a l 
upward cha in i s shown. 
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1. The set of elements that are the same as G. (exact 
matches) 

2. The set of elements that are predecessors of G. 
(subgraphs) 

3. The set of elements that are successors of G. 
(supergraphs) 

4. The set of elements that have predecessors in common 
with G. (close matches) 

The algorithm does something more powerful: It finds the immediate 
predecessors to G (the largest known subgraphs of G), and the 
immediate successors to G (the smallest known supergraphs of G). 
This is the key to the algorithm. By finding where G f i t s i n the 
p a r t i a l ordering we find the four desired sets. The algorithm must 
minimize the number of comparison operations required to find the 
four desired sets. This minimization of comparison operations i s 
very important in a system that uses complex objects l i k e graphs 
since the complexity of these comparisons varies exponentially with 
size.(14) The algorithm i s easy to implement and searches nodes i n a 
l o g i c a l bottom-up order. This may be useful i n domains where, for 
example, one may wish to apply general concepts or rules to a 
situation before more specific ones are found to be applicable. 

Details of the Algorithm. The algorithm has two phases. In Phase 1 
the immediate predecessors (largest known subgraphs) are found and i n 
Phase 2 the immediate successors (smallest known supergraphs) are 
found. These two phases are enough to answer a l l four parts of the 
query. To understand the algorithm, note that transitive edges 
between concepts in the p a r t i a l ordering are not stored: i f a 5 b (a 
i s a subgraph of b) and b < c, an edge from a to c is not stored. 
IP(y) i s the set of immediate predecessors of the data element y and 
IS(y) i s the set of i t s immediate successors. These sets are stored 
i n f i l e s as LISP l i s t s , one line per concept. Phase 1 determines 
IP(G) where G i s the query object. 

S : - U 
-While there i s an unmarked element y in the 
database such that each member of IP(y) i s marked 
Τ and y has fewer nodes than G: 

I f y < G (graph comparison needed) 
Then mark y as Τ 

{ β } : - {S - IP(y)} U {y} 
Else mark y as F. 

It can be shown that when this process terminates S • IP(G), the 
set of largest known subgraphs of the query graph. When Phase 1 
begins, a l l objects at the bottom of the p a r t i a l ordering (the 
primitives) are compared to G since they have no immediate 
predecessors. This process is fast because the bottom of the p a r t i a l 
ordering contains single node graphs for which the comparison 
operation is t r i v i a l . 

Phase 2 may be informally described as follows: The goal of 
Phase 2 i s to calculate IS(G) - the immediate successors (smallest 
known supergraphs) of G: 
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-Sequence through the elements of IP(G) i n any 
order, chaining up the p a r t i a l ordering for each 
element. Beginning with the last element of 
IP(G) a breadth-first search i s required and i f 
an unmarked element y i s encountered which has 
been reached from a l l other elements of IP(G), 
execute : 

I f G < y (comparison needed) 
Thenjs}:={s|u{y} 

-(mark a i l concepts chaining up from y as 
successors without further comparison) 

Else continue breadth-first search from y. 
When Phase 2 terminates S β IS(G). A l l supergraphs of G have 

been identified by chaining up from each element of IS(G) as these 
are found. 

Phase 1 and Phase 2 answer parts 1-4 of the query as follows: 

1. Exact match: If G already exists in the database, 
then IP(G) s IS(G). G i s the single element contained 
i n these sets. 

2. Subgraphs: The subgraphs are simply a l l nodes that 
were marked Τ i n Phase 1. 

3. Supergraphs: The supergraphs are marked i n Phase 2. 
They are the union of the upward chains from each 
member is IS(G). 

4. Close matches: The close matches are the union of the 
upward chains from each member of IP(G) (not including 
supergraphs). In the most obvious implementation of 
Phase 2, a hash table is used to manage the breadth 
f i r s t search. I t contains information about which 
nodes have been v i s i t e d and which upward chains they 
are on. The desired union can be found simply by 
collecting elements of the hash table. 

Other Chemical Structure Search Systems. Many e f f i c i e n t systems have 
been designed to identify graphs i n a f i l e that contain a given 
substructure. One system i s the Cambridge Crystallographic Data 
Base.(15) In the Cambridge system the query structure i s compared to 
every molecule of the database. This means that r e t r i e v a l time for a 
query goes up li n e a r l y with the size of the database. Other search 
systems alleviate this problem. These systems use a screen 
approach.(16-22) The screen aproach i s an indexing scheme that 
includes, associated with each smaller concept of the database, a 
l i s t of data items that contain the smaller concept (a l i s t of upward 
pointers). 

Comparisons with the Screen Approach. The algorithm used by screen 
systems i s a special case of our algorithm, the difference between 
the screen approach and this approach i s i n the number of levels 
allowed in the database organization and not i n the r e t r i e v a l 
algorithm. 

Which organization supports more e f f i c i e n t r e t r i e v a l i n terms of 
number of concept comparisons? No absolute conclusion can be 

 P
ub

lic
at

io
n 

D
at

e:
 A

pr
il 

30
, 1

98
6 

| d
oi

: 1
0.

10
21

/b
k-

19
86

-0
30

6.
ch

01
8

In Artificial Intelligence Applications in Chemistry; Pierce, T., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1986. 



228 ARTIFICIAL INTELLIGENCE APPLICATIONS IN CHEMISTRY 

reached, but there are reasons to believe that i n general a 
multilevel aproach may be cheaper overall.(13) F i r s t , our approach 
tends to search smaller concepts than does the screen system. The 
cost of these searches w i l l be much cheaper. Second, in Phase 2 of 
our system we ar^ able to infer that some graphs are supergraphs of 
the query without daing further searching. Finding a l l subgraphs and 
a l l supergraphs of a query, with precision, i s beyond the 
capabilities of most screen systems. F i n a l l y , experimental evidence 
supports our system. 

To compare the performance of the multilevel organization 
against a two-leveled one we ran our r e t r i e v a l algorithm on two data 
bases. The f i r s t contained molecular structures, discovered molecule 
concepts, and primitives, and had 630 concepts altogether. The 
second was a version of the f i r s t i n which a l l intermediate levels 
between primitives and top-level structures have been removed, 
leaving just two levels. This database had 521 concepts i n a l l . The 
algorithm ran more than twice as fast on the multi-leveled database, 
even though the two-level database contained fewer concepts. The 
algorithm produced 33% more answers (subgraphs and supergraphs) when 
running on database 1 than on database 2. 

Linear Notation for Reactions and Structures. To assist i n the 
development of this program a new linear grammar was developed to 
describe reactions and structures (Figure 1). A program written by 
Mr. James Wells at the University of Texas accepts alphanumeric 
strings created by the chemist. From these strings which represent 
structures or reactions the Pascal program generates a connectivity 
table of the sort used in the Cambridge Crystallographic database. 
The connectivity f i l e s are transferred to the main LISP program which 
creates the LISP structure l i s t s shown in Figure 1. 

The grammar for reactions and structures is easily mastered by 
the organic chemist. The following symbols are used: 

- ; single bond 
= ; double bond 
* ; t r i p l e bond 
+ ; delocalized double bond 

Other than these symbols, the chemist needs to remember only two 
rules: ( i ) rings are encoded in parentheses wherein the last atom i s 
followed by a bond which connects i t to the f i r s t atom i n the 
parenthetical expression, and ( i i ) atoms at branching points must be 
numbered. Linear or c y c l i c strings are separated by commas. 
Hydrogens are ordinarily ignored. Thus cyclopentane i s encoded as 
(c-c-c-c-c-) and sec-butanol as c-cl-c-c,cl-o. A menu is available 
which contains commonly used structures which can be used in an 
abbreviated form to define molecules. The t-butyldimethylsilyl ether 
derived from n-propanol can be represented as *tbs*-o-c-c-c. Further 
examples of representations based on this system are shown in Figures 
4-7. 

The chemist can encode a structure i n many ways and, provided 
the representation follows the above rules, each alphanumeric string 
w i l l generate a proper connectivity f i l e . For example, 
l f(c-c-c-cl-c-c-c-c2-) ,cl-c2" or 11 (cl-c2-c-c-c-) ,cl-c-c-c-c2 l f are both 
proper representations of 3.3.0-bicyclooctane. IUPAC numbering can 
be followed or the numbering can be arbitrary. 
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Reaction graphs are encoded i n the same way as sta t i c 
structures. Bonds which change during the reaction are coded as 
"x:y" where χ is the bond type before the reaction and y is the bond 
type after the reaction. Thus "c-c=:-c" represents the reduction of 
propene to propane and 11 (c-o:-cl-c-c-) , c l - : i " represents the 
formation of tetrahydrofuran and an iodine atom from 
4-iodobutan-l-ol. 

A second program accomplishes the reverse process and w i l l 
generate from a connectivity f i l e an alphanumeric representation of 
molecules or reactions based on this linear notation. While we 
recognize the need for a graphical interface for the main AI program 
we are enthusiastic about the efficiency of this linear grammar. 
This linear notation should be adaptable to use in any application 
dealing with connected graphs. 
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E x p e r t - S y s t e m R u l e s f o r Diels-Alder R e a c t i o n s 

C. Warren Moseley, William D. LaRoe, and Charles T. Hemphill 

Texas Instruments Inc., Dallas, TX 75265 

Expert systems of today are powerful when used in the proper domains. 
Unfortunately, the most difficult part of applying these systems is the struc
turing of knowledge into rule format. This paper describes methods devel
oped which allow the capture of Diels-Alder reaction knowledge into simple 
and elegant expert system rule format. Essential components of the system 
include: a grammar for matching the input molecular structure expressed 
in Wiswesser Line Notation (WLN), the unification of many reactions into a 
single generalized mechanism using synthon template patterns, use of WLN 
rules to produce valid synthons, and use of frontier molecular orbital theory 
(FMO) to verify the disconnection. This system is implemented in Prolog, 
whose natural backtracking and generation capabilities easily express and 
produce the many structural combinations possible. 

There have been attempts to apply formal methods to the representation of organic 
compounds [l],[2], some attempts to apply artificial intelligence to organic synthesis 
[3],[4], and numerous attempts to apply the use of molecular orbital calculations to 
the verification of the validity of compounds in the synthesis route. This effort was a 
moderate attempt to examine the representation issues involved in writing production 
rules for Diels-Alder disconnections. 

The disconnection approach [5] is adopted in this work because it is amenable 
to backward chaining systems. The starting point is the target compound, which is, in 
this case, a Diels-Alder product. The target compound is broken or disconnected into 
two distinct parts called synthons. The synthons are the ideal representations of the 
actual reactants used to produce the target compound. Synthons embody the physical 
properties of the actual compounds they represent. 

As an initial implementation approach, rules could consist of specific targets and a 
list of their synthons. No one uses this method because the naive approach of expressing 
every possible chemical disconnection is impracticable: the number of rules involved to 
express even trivial synthetic routes grows exponentially. Any expert system solution to 

0097-6156/ 86/0306-0231 $06.00/0 
© 1986 American Chemical Society 
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2 3 2 ARTIFICIAL INTELLIGENCE APPLICATIONS IN CHEMISTRY 

the synthesis problem must attack two fundamental problems: the variety of functional 
groups which may participate in a given reaction and the symmetry involved between 
function groups in a reactant (intra-synthon and inter-synthon functional group interac
tion, respectively). The thrust of this research has been to capture the reaction routes 
for a chemical disconnection in a clear, symbolic notation which accommodates quali
tative reasoning with functional groups and which comprehends the symmetry of this 
problem. 

Ideally, an implementation language would support symbolic and linguistic ap
proaches to representation and manipulation, a qualitative approach to verification, and 
a deductive approach to disconnection. Prolog [6] is a symbolic language which directly 
supports backward chaining deduction. Viewed as a declarative language it naturally 
supports elegant grammar formalisms and its procedural aspects support qualitative 
reasoning. For these reasons, Prolog was chosen as the implementation language for 
this project. 

In summary, the following research goals are addressed in this effort: 

1. A linguistic approach to the representation of chemical information. 

2. Use of molecular orbital theory to qualitatively validate derived synthons. 

3. Unification of synthetic disconnections into a general form. 

4. Use of symbolic structure rearrangement in WLN. 

2 Grammar Rules for Structure Recognition 
The Definite Clause Grammar (DCG) formalism [7] is utilized throughout this project. 
Grammar rules are used in the expert system rules to recognize the general class of 
the parent molecule in the disconnection (e.g., cyclohexene). The class determines the 
patterns used to construct the resultant synthons (discussed in Section 4). 

2.1 Background for W L N and D C G 

Many researchers have recognized the importance of having an unambiguous grammar 
for chemical notation, but they have mainly applied WLN [8] to on-line compound 
search [9] and structural summary (identification of common structural features) [10]. 
Johns and Clare point out that it is a linguistic rather than merely a symbolic notation. 
This means that the symbols are represented and manipulated in well defined structures. 
This section relies on the unambiguousness of WLN to recognize parent molecules while 
Section 5 relies on the WLN rules to actually manipulate symbol structures. 

The DCG formalism is based on first order predicate logic and provides a clear 
and powerful method for describing languages. The formalism generalizes the Context 
Free Grammar (CFG) formalism and DCG grammars may be efficiently executed. DCG 
is most often implemented through a translation process from the DCG notation to a 
top-down, left-to-right, backtracking Prolog program. This program becomes a parser 
for the language specified by the DCG. 

The required amount of work at each step in a backtracking parser is exponential 
in the number of constituents already found, just for recognition. This occurs because 
intermediate effort, which could become useful later, is not saved. Of course, classes of 
grammars exist for which this behavior does not occur. Most programming language 

 P
ub

lic
at

io
n 

D
at

e:
 A

pr
il 

30
, 1

98
6 

| d
oi

: 1
0.

10
21

/b
k-

19
86

-0
30

6.
ch

01
9

In Artificial Intelligence Applications in Chemistry; Pierce, T., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1986. 
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grammars are carefully written to avoid exponential behavior. However, parsing algo
rithms exist (e.g., the active chart parser [11]) where the worst case parsing time is 
0(n 3) for any CFG grammar and 0(n 2) when the grammar is unambiguous (n is the 
sentence length). Nevertheless, Prolog provides an adequate DCG grammar parsing 
mechanism for the purposes of this work. 

2.2 G r a m m a r for Diels-Alder Reactions 

This section examines grammars used to recognize parent molecules (carbocyclic rings 
for example). 

The following regular expression [12] recognizes cyclohexene: 

L6UTJ [ΑσΑ] [ΒσΒ] \Coc} {ΌσΌ} [ΕσΕ] [FaF] 

where if r is any regular expression, [r] is an abbreviation for (e + r) (in other words, 
r is optional), e is a regular expression that denotes the empty set and is the 
union operator for the languages represented by the regular expression arguments. The 
symbol V represents an arbitrary substituent, with the subscripts indicating to which 
ring locant the substituent belongs. 

Using DCG, the more general class of carbocyclic rings can be recognized. The 
grammar rule 

carbocyclic(Substituents, Number) — • a L " , number(Number), ttU", ttT", ttJ", 
substituents(Substituents, Number). 

achieves the desired result. Within this rule the logical variables are denoted by a 
leading capital letter. This declaratively states that carbocyclic rewrites into the letter 
ttL", followed by a number (which in turn is recognized by DCG grammar rules), followed 
by the letters "UTJ", followed by the substituents. The substituents rule recognizes 
the Substituents at each ring locant and uses the instantiated value for Number to 
verify that the ring locant values are within the proper range. Subsequent steps in the 
disconnection process utilize the variables mentioned in the head of the rule. 

Finally, using the grammar rule described above (and related rules not presented), 
the goal 

carbocyclic(S, N, "L6UTJ A l BNW F3", []) 

rewrites the string "L6UTJ A l BNW F3" into the empty set [] (meaning that the entire 
string is recognized) and produces the result 

S = [[A,1],[B,N,W],[F,3]],N = 6. 

S is a list of ring locants and the corresponding substituents used in subsequent discon
nection stages. Ν represents the number of ring locants. 

2.3 Appl icat ion to Other Reactions 

The general grammars and the mixture of declarative and procedural Prolog code allows 
easy grammar rule writing for other reactions. As an additional example, consider 
heterocyclic rings. The grammar rule 

heterocyclic(Substituents, Number, Heteroatom) — • "T", number(Number), 
heteroatom(Heteroatom), ttJ", substituents(Substituents, Number), 

recognizes this class of molecules. 
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The following grammar rule recognizes the heteroatom: 

heteroatom(Heteroatom) — • [Heteroatom], {member(Heteroatom, "NOS")}. 

Curly braces allow direct inclusion of Prolog terms within DCG grammars (the terms are 
not translated). In this case, the member predicate tests the value of the Heteroatom 
variable for membership in a list of heteroatoms. 

3 The Reaction Check 

This system covers concerted reactions of the π electron systems on tworeactants to form 
new σ bonds yielding carbocyclic rings with a single unsaturation. If the reaction follows 
the rule of maximum orbital overlap, then it is a suprafacial, suprafacial process and is 
termed a [,-4, + r29] reaction. By the Woodward-Hoffmann rules this is a symmetry-
allowed thermal reaction [13]. 

The theoretical underpinnings used in this program are derived from those used 
by Jorgensen et. al. in the CAMEO system [14], [15] with the exception that our system 
works backwards, going from a product to either the reactants which form it, or issuing 
a statement informing the user that a disconnection is not possible. 

3.1 Basic Frontier Molecular Orbi ta l Theory 

It is known from molecular orbital theory that molecules possess sets of individual 
molecular orbitals (as long as the molecules are sufficiently far apart from each other). 
These are the basic unperturbed molecular orbitals used in the evaluation of the reaction. 
As the molecules move more closely together, their orbitals begin to overlap. This 
interaction between the orbitals on the different molecules results in the mixing of the 
orbitals on each molecule [13]. 

According to frontier molecular orbital theory, the strongest interactions are be
tween those orbitals that have coefficients with similar magnitudes relative to the unper
turbed molecules, i.e. the interaction is between the small coefficient on the dienophile 
and the small coefficient on the diene [16], [17]. 

If both of the molecular orbitals involved in the bonding are filled, the resulting 
orbital is not significantly reduced in energy [18]. The greatest reduction in energy 
arises in the interaction between a filled molecular orbital and an empty one. Since 
the interaction is strongest between the orbitals of like energy, the ideal combination 
of orbitals is between the highest occupied molecular orbital (HOMO) on one molecule 
and the lowest unoccupied molecular orbital (LUMO). 

Although Diels-Alder reactions can occur in the unsubstituted case, the reaction 
is most successful when the diene and the dienophile contain substituents which exert 
a favorable electronic influence [19]. In the normal electron demand case, the most 
favorable interactions are between dienes with electron-donating groups and dienophiles 
with electron-withdrawing groups. Cases have been reported in which inverse electron 
demand occurs and the electronic nature of the diene and dienophile are reversed [20], 
[21], [22]. This case of inverse electron demand is accounted for in the system. 
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3.2 Structural Constraints on Reactants 

It became necessary early on in the project to develop a method for quickly checking the 
reactants for structural features which would make them unsuitable for the Diels-Alder 
reaction. The constraints are integrated into the notation package, since they are most 
easily recognized in terms of the notation patterns resulting from the disconnection. The 
synthons produced by a Diels-Alder disconnection are checked for proper configuration. 
All synthons are checked before the FMO algorithm begins, resulting in the failure of 
program execution and the return of a "no" to indicate no reaction. This assures that 
synthons produced by the rules are actually reactive. 

The following structural features of diene-synthons are considered unreactive in 
+ T2e] cycloadditions: 

1. Any diene-synthon unable to have an s-cts conformation. 

2. Diene-synthons in which an exocyclic double bond is conjugated to a double bond 
in the ring (e.g., a double bonded substituent on the diene). 

3. Diene-synthons in large (greater than 7-membered) rings. 

4. Acyclic compounds that have bulky substituents at the central positions on the 
diene-synthon. The substituents at these positions are relatively close to each 
other, and bulk leads to steric hindrance. 

5. Substitution at both terminal diene-synthon positions is allowed only if the sub
stituent is a primary atom or a triply bonded functional group (such as a cyano 
group). 

All double bonds are perceived as possible dienophile synthons by the notation 
package. The screening involves only the elimination of all double bonds in aromatic 
compounds (WLN symbol ttR"). 

3.3 Basic H O M O - L U M O Calculations 

From work performed in 1983 by Burnier and Jorgensen [15], the following ab initio 
calculations for the HOMO and LUMO energies of the synthons were developed. The 
function n(x, parent) returns the number of atoms of type χ in the parent. This 
function is abbreviated below as simply n(x) where the parent is understood. The 
symbols UU, Ο, N, S represent triple bonds, oxygen, nitrogen, and sulfer, respectively. 
The subscripts 'c' and 't' denote central and terminal locations respectively in the 
parent for the elements which they modify. For brevity, the terms diene-synthon and 
dienophile-synthon will be replaced with diene and dienophile respectively. 

For Dienes: 

£ H O M O = -2n(0) - n(UU) - 0.2n(Nc) - 0.5n(St) - n(Sc) - 9.0 (1) 

# L U M O = -n(O) - 0.5n(N) - 2n(St) + 1.5n(Sc) + 0.6 (2) 

For Dienophiles: 

£ H O M O = -n(UU) - 4n(0) - 2n(N) - n(S) - 10.5 (3) 

£ L U M O = n(UU) - n(O) - 0.5n(N) - 4n(S) + 1.8 (4) 
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In the carbocyclic ring case, the HOMO-LUMO values default to the constants at 
the end of the equations. The formulas above are used to compute the orbital energies 
(both HOMO and LUMO) of the unsubstituted parent compounds. In the case of 
substituted compounds, additional formulas account for the electronic effects of the 
substituents. 

The explanation of the regiospecificity of Diels-Alder reactions requires knowledge 
of the effect of substituents on the coefficients of the HOMO and LUMO orbitals. In 
the case of normal electron demand, the important orbitals are the HOMO on the 
diene and the LUMO on the dienophile. It has been shown that the reaction occurs 
in a way which bonds together the terminal atoms with the coefficients of greatest 
magnitude and those with the coefficients of smaller magnitude [18]. The additions 
are almost exclusively cis and with only a few exceptions, the relative configurations of 
substituents in the components is kept in the products [19]. 

It is known that the effects of substituent groups on a diene or dienophile vary 
between different types of parents [23]. A function, τ(Υ), has been determined for several 
functional groups, with Y corresponding to their electron donating or withdrawing 
capability such that a reasonable estimate of the HOMO energy could be obtained by 
use of the equation [15]: 

This equation yields a value for the substituted molecule where η(Ρ) is the sensi
tivity of the parent P. Some initial values, called r values, which describe the electronic 
effects of functional groups have been found and developed by Jorgensen et. al. Hydro
gen was assigned a τ of 0.0 eV so that electron withdrawing substituents have negative 
τ values and electron donating groups have positive τ values. The values for τ were 
chosen so that a 0.5 eV change in the substituent gives a change of 10 in the τ value. 
This algorithm, when combined with the notation rules, yields useful results for many 
functional groups and gives reasonable estimates of the values for those not known. The 
factor 7(P) for an ethylene analog is given by: 

For any given diene the value for 7(P) can be adequately represented by the value 
0.03 eV. This provides the proper value for correction in the calculation due to the 
sensitivity of the parent compound towards different types of functionality. 

3.4 Determination of Substituent Effects 

To determine substituent effects, substituent groups are built from primary recognized 
atoms and functional groups. A functional group is scanned one Wiswesser symbol 
at a time. A Wiswesser symbol can represent either an individual atom (e.g., a G " 
for chlorine) or a functional group (e.g., a Z" for the amino group). This allows us to 
adapt the "layer" method of Jorgensen to the scanning of the functional groups on 
the rings. These groups are provided as Prolog sublists as outlined in the previous 
section. Once the comparison between the functional group elements and the known 
values are compared, τ is calculated by the following method. The formula for the 
numeric calculation is: 

£ H O M O = l(P) + T(Y) + EHOMO(P) (5) 

7(P) = O.Oln(UU) + 0.06n(O) + 0.03n(N) + 0.03n(S) + 0.05 (6) 

+ 2 w / ( l + NFG) (?) 
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Table 1. Example τ Table Entries 

name WLN τ 
tau_entry (p-methoxyaryl, 
tau_entry(trimethylamino, 
tau_entry(aryl, 
tau_entry('methyl sulfate', 
tau _entry (amino, 
tau jent ry (olefinic, 
tau_entry (sulfate, 

"R", 
a sr , 
"Z", 
"1U2", 
USH", 

"R DOl", 
"Ν1&Γ, 

51). 
44). 
42). 
38). 
36). 
36). 
32). 

The legend for this equation is: 

• Tmax - the largest calculated reference value of τ in either the positive or negative 
direction. 

• Tsum - the sum of the remaining r values in the functional group. 

• NFG - the number of functional groups attached to the parent system. 

The above is based on the calculation of a collective τ for the whole molecule. This 
value changes the HOMO of either the diene or dienophile, as is necessary. This equation 
is accurate to about 0.5 eV on either side of the "known" values [15]. The value of rtotai 
is inserted into the HOMO-LUMO calculation as the parameter τ(Υ). Note that in its 
pure form, this equation only yields values for the HOMO orbitals. Corrections are used 
for the calculation of the LUMO values. Table 1 contains examples of the Wiswesser 
Line Notation and the raw r values used in the computation of orbital energies. 

3.5 Determination of Permutated L U M O Coefficients 

The following rules were used for the determination of the LUMO orbital coefficients 
from the values determined for the HOMO coefficients [15]. 

1. An electron donating functional group raises the energy of the HOMO orbital of 
a system about twice as much as it raises the LUMO. 

2. In contrast, an electron withdrawing functional group lowers the HOMO energy 
about one third as much as it lowers the LUMO. 

3. Groups which add conjugation such as olefinic, acetylenic and aromatic groups 
lower the LUMO orbital energy one third to one half as much as the HOMO 

The same equations are used to determine both the HOMO and LUMO values. 
This is consistent with the fact that the HOMO and LUMO orbitals are calculated from 
the same parent system, and that the difference between the orbital energies can be 
adequately covered by the two parameters 7(P) which represents the sensitivity of the 
parent to substitution and τ(Υ) which represents the electronic effect exerted by the 
functional group acting as a substituent. 

energy. 
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To implement the rules mentioned above, only the r(Y) values for the functional 
groups are changed. Thus, the r(Y ) values for the calculation of the LUMO orbitals on 
both the diene and dienophile are changed following these rules: 

1. Positive τ values except those for conjugated hydrocarbons are divided by a factor 
of 2. 

2. Negative τ values are multiplied by 3. 

3. r values for conjugated hydrocarbons are divided by a factor of 3 and their signs 
are reversed. 

This method covers many combinations of functional groups that influence the 
orbital energies. A feature of this method is that it uses the same functional group 
r values as in the HOMO energy calculation. The algorithm described above is used 
for the calculation of both the HOMO and LUMO atomic coefficients. The r values of 
the substituents are permutated to give the proper values for the LUMO orbitals. The 
following steps are required: 

1. r values on terminal positions are taken from the list previously described. 

2. Resultant τ values on the central diene positions are divided by a factor of two 
to accommodate the fact that the orbital coefficients at these positions are very 
small. 

3.6 Algor i thm for Regiochemical Selection 

Any functional group attached to a terminal carbon on either a diene or dienophile 
increases the magnitude of the coefficient on the opposite terminal. Any functional 
group attached to a central position on the diene (there is no analogous case for the 
dienophile) increases the magnitude of the coefficient on the terminal farthest from the 
substituted position. For cyclohexene, the central locants are the A and Β positions 
on the Diels-Alder adduct. Thus, if a functional group is on position A the magnitude 
of the coefficient at terminal C increases. One of the remarkable aspects of the Diels-
Alder reaction is the specificity of the bonding between the carbon atoms [13]. The 
orientation of the addition can be accurately predicted by an extended form of the 
frontier molecular orbital theory as developed by Fukui and Fujimoto et. al. [16]. For 
dienes the coefficients are determined as follows: if the sum of the absolute values of 
r on positions F and Β is greater than the sum of τ on positions A and C , then the 
coefficient on position C has the greater magnitude, otherwise the coefficient of position 
F has the greater magnitude. On dienophiles, if the sum of the absolute values of τ is 
greater on position D than on position £ , then £ has the greater magnitude. 

4 Reaction Unification Using a General Form 

This section examines the notion of a general form for representing the possible synthons 
in a reaction. Derivation of this form is illustrated and examples of the general form 
are presented. Symmetry and the encoding of optional notation is discussed and some 
examples of the naive approach are presented. 
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Table 2. The Naive Approach 

Parent Synthons 
discon(tfL6UTJ Al Β Γ , 
discon(aL6UTJ D1Q", 
discon(ttL6UTJ Al Bl DOVI", 
discon(aL6UTJ Al Bl Dl E N W , 

["lUYl&Yl&Ul", "lUl"]). 
[ t t lU2Ur, aQ2Ulw]). 
[«IUYI&YI&UI", "îvoiur]). 
["lUYlfcYlfcUl", "WN1U2"]). 

4.1 Mot ivat ion: the Naive A p p r o a c h 

In the naive approach, disconnections are simply listed as facts with the molecule to 
disconnect as the first argument and a list of the synthons as the second. Table 2 
contains some examples. This approach suffers in many ways; primarily, the number 
of rules would become unmanageable (quite huge even for cyclohexene), slowing the 
inferencing speed of the expert system. 

A sample inference mechanism using these facts (given the natural backward chain
ing of Prolog) might be 

disconnect(Parent, Given.Synthons) : -
discon(Parent, Synthons), 
disconnect(Synthons, Given.Synthons). 

disconnect(Parent, [Parent]) : -
given(Parent). 

disconnect [First I Rest] . [First.Disc|Rest J)isc] ) :-
disconnect(First, F i r s t J)isc), 
disconnect(Rest, Rest.Disc), 

disconnect ([] , []). 

This procedure recursively disconnects synthons until the final synthons for the orig
inal parent are all available (or given) compounds. Upon successful completion, the 
variable Given-Synthons contains a tree (in list notation) which denotes the synthon 
combination order to reproduce the parent compound. 

4.2 Derivation of the General F o r m 

Consider the domain of a six-membered ring with single unsaturation. Table 3 expresses 
the synthetic route with one substituent. Again, the symbol V represents an arbitrary 
substituent. Square brackets surrounding a set of symbols indicates optionality of those 
symbols (as in regular expression notation). For example, the string may reduce 
to the string V or α σ&* depending on whether the substituent represented by σ ends 
in a terminal symbol or not (following the rules of WLN). 

Symmetry in the patterns, however, hides many details in the diene and dienophile 
patterns. Table 4, with combinations of symmetric substituents, reveals more of the 
details. The order of the symmetric substituents may be chosen arbitrarily. Alphabetical 
ordering was chosen here for consistency. 

Finally, for a full cyclohexene molecule, the patterns become 

<rclUY<rA[&]Y<rB[&]Ul*F + σΒΐνΐσΕ (8) 
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Table 3. Patterns for a Six-Membered Ring with One Substituent 

Substituent Position Diene Dienophile 
A or Β 
C or F 
D or Ε 

lUY<r[fc]Ul 
<rlU2Ul 
1U2U1 

1U1 
1U1 

σ ΐ ϋ ΐ 

Table 4: Patterns for a Six-Membered Ring with Two Substituents 

Substituent Position Diene Dienophile 
A and Β 
C and F 
D and Ε 

ΐυΥσ Λ[&]Υ<τ Β[&]υΐ 
<r c lU2Ul* F 

1U2U1 

1U1 
1U1 

σρΐυΐσΕ 

It should be clear that this notation applies to many different classes of reactions. 
Use and manipulation of this general form will be discussed in the next section. The 
following discussion outlines its use in expert system rules. 

4.3 Use of the Mechanism in Rule Format ion 

Given the general form, it is possible to capture many disconnections of a given class 
with a single rule. The following example illustrates the approach advocated in this 
paper for cyclohexene. 

discon(WLN, [Diene, Dienophile]) : -
carbocyclic(Substituents, 6, WLN, []), 
collect.substs(Substituents, "CÀBF", Dn.substs) , 
collect.substs(Substituents, " D E " , Dl.substs), 
fmo(Dn.substs, Dl.substs). 
make_synthon(Dn_substs, H*1UY**Y*«J1*W. Diene), 
make_synthon(Dl_substs, M*1U1*", Dienophile). 

This rule declaratively states that the compound represented by WLN disconnects to 
the Diene and Dienophile pair if the WLN matches the carbocyclic grammar rule 
with 6 substituents, the collected substituents for the Diene and Dienophile pass the 
fmo test, and the respective constituents may be successfully incorporated into the 
general form for the cyclohexene Diene and Dienophile. 

The goal make _synthon instantiates the general form and rewrites the instan
tiated general form into a pseudo-WLN form. The pseudo-WLN form has adjacent 
number values combined and redundant ampersands eliminated, but the branch or
dering does not necessarily follow all the WLN rules. The symbol in the second 
argument represents a general substituent, 'σ', where the subscript is determined by 
the order mentioned in the collect_substs predicate [e.g., "CABF" and "DE"). 

The following grammar rewrites the instantiated general form to the pseudo-WLN 
notation. The unit symbol '[]' in the following grammar represents the NIL symbol (or 
empty symbol) and arises when a substituent is not present in a particular position. This 
grammar captures the following conditions: the '[]' symbol next to a number disappears, 

 P
ub

lic
at

io
n 

D
at

e:
 A

pr
il 

30
, 1

98
6 

| d
oi

: 1
0.

10
21

/b
k-

19
86

-0
30

6.
ch

01
9

In Artificial Intelligence Applications in Chemistry; Pierce, T., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1986. 



19. MOSELEY ET AL. Expert-System Rules for Diels-Aider Reactions 241 

adjacent numbers are summed (for a longer carbon chain), a three way branch reduces 
to a carbon when one of the branches is empty, optional ampersands are eliminated, and 
required ampersands are retained. The rules must be applied to the string repeatedly 
until no changes to the string occur. 

N[] — N. 
[]N — N. 
<TN — • {number(<r), N N is σ + Ν } , NN. 
Νσ —-> {number(a), NN is Ν NN. 
N i N 2 — {NN is Ni+ N2}, NN. 
Y[]& — 1. 
Υσ& — • {not(number(a)), endsJn_terminal(a)}, Υσ. 
Y<7& — • {not (number (σ)), not(endsJn_terminal(<r))}, Yak,. 

For example, performing these transformations with an empty cyclohexene (σΑ = 
[] ... up = []) yields the diene K1U2U1" and the dienophile " Ι ϋ Γ . Once the synthons 
are in pseudo-WLN form, they are rearranged to conform to the standard WLN form 
(described in Section 5). 

4.4 Appl icat ion to Other Reactions 

General forms are easily developed for other reactions. The machinery introduced in 
this section can then be utilized to write disconnection rules for other reactions. For 
example, consider the Diels-Alder adduct bicyclo[2.2.1]hept-2-ene. Using the regular 
expression notation described previously, the line notation for these types of compounds 
can be represented as 

L55 CU ATJ [ΑσΑ] [ΒσΒ] [Cac] [ΌσΒ] [ΕσΕ] [FaF] [GaG} [-A&(F+G)] [-B&(F+G)] 

The information following the hyphens describes the orientation of the substituents at 
locants where stereoisomerism can occur. F and G are the locants where the stereo
chemistry may occur. 

This compound can be disconnected into a cyclopentadiene synthon and a dieno
phile synthon similar to the the one previously described. The general form for the 
disconnection is then given in the notation by 

L5 AHJ ΑσΑ ΒσΒ Cac ΌσΌ ΕσΕ + aFl\JlaG (9) 

Additional pseudo-WLN rewrite rules would eliminate ring locant symbols which are 
followed by an empty substituent. 

5 Notation Rearrangement 
The previous section illustrated the formation of diene and dienophiles and noted that 
the intermediate notation did not necessarily obey the WLN rules. This section de
scribes the transformation from pseudo-WLN form to legal WLN notation. 

A predicate called wln_order occurs within the make_synthon predicate. This 
predicate builds a graph from the pseudo-WLN (using WLN Rule 8(a)) and possibly 
reorders the graph as described below. The following Prolog code describes this manip
ulation: 
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wln_order(Pseudo_WLN. WLN) :-
notation_graph(Pseudo_WLN), 
rule6(Chain), % uses graph in database 
mle7and8(Chain. WLN). 

Construction of the notation-graph requires general knowledge about terminal 
symbols and their interaction with branch symbols. The pseudo-WLN is parsed using 
this knowledge. Vertices are created when branch symbols are encountered and the edges 
are labeled with the notation which occurs between the branch vertices. An undirected 
graph results from this process and all vertices with outdegree one are considered roots. 

Rule 6 orients the molecule, collecting the vertices and edges in the proper order. 
To accomplish this, all root nodes are collected. Starting from each root, the primary 
chain of the notation is chosen using the longest path of notation symbols, breaking any 
tie by choosing the chain which ends in the latest notation symbol (Rule 2). 

Next, Rule 7 orients branch choices along the primary chain chosen above. This 
rule orders branches using the branches with the lowest branching factor and with the 
fewest notation symbols. Ties are again broken by Rule 2. Rule 8 guides the reassembly 
of the molecule in proper WLN form. It reintroduces ampersands and inserts hyphens 
where necessary. All of this was easily implemented in Prolog, using DCG to parse the 
pseudo-WLN form and the Prolog database to represent the graph. 

Many additional rules are required for other reactions. Probably the entire comple
ment of WLN rules must be implemented for even moderately sophisticated chemistry. 
It may be desirable at this point, however, to design a notation which encompasses 
WLN'S strong points, but is more computationally oriented. 

6 Conclusions 
Other systems have developed FMO reaction checks and used WLN for cataloging, but 
this system has relied heavily on a symbolic approach to chemistry, including application 
of grammar techniques to WLN strings. We feel that our system is very successful in 
the domain that it has been applied, eliminating hundreds of naive expert system rules. 
We also feel that our techniques are applicable to many other reactions as well. 

This paper has primarily stressed concepts rather than implementation details. A 
prototype system based on these concepts has been implemented, with concentration in 
the cyclohexene domain. The entire system, including grammars, the FMO verification, 
and WLN manipulation required only 12 pages of Prolog code. Although execution 
speed was never considered a factor at this stage, the system performs the disconnection 

L6UTJ A l B l D l ENW => 1UY1&Y1&U1 + WN1U2 (10) 

in four seconds with a IK Logical Inferences Per Second (LIPS) interpreter. 
There are several future research directions for this project. First, results from 

the FMO reaction check are not infallible due to the qualitative nature of this check. A 
more precise, yet computationally feasible model may be possible. Second, more work 
remains in the WLN rearranger; a full system based on our concepts would require 
knowledge of the entire complement of WLN rules. It may also be desirable to adopt 
or develop another, more computationally tractable line notation for the purpose of 
synthetic analysis. Finally, we would like to extend our work to more reaction classes 
to examine its potential in more detail. 
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Using a Theorem Prover in the D e s i g n 

of O r g a n i c Syntheses 

Tunghwa Wang, Ilene Burnstein, Michael Corbett, Steven Ehrlich, Martha Evens, 
Alice Gough, and Peter Johnson 

Illinois Institute of Technology, Chicago, IL 60616 

This paper describes an expert system for 
organic synthesis which uses a resolut ion 
based theorem prover as i t s reasoning 
component. This reasoning component i s 
b u i l t upon LMA (Logic Machine 
Archi tec ture) , a c o l l e c t i o n of Pascal 
subroutines written by the theorem proving 
group at Argonne National Laboratory. The 
SYNLMA system (SYNthesis with LMA) 
represents the target compound as a theorem 
to be proved, while the s tar t ing materials 
and react ion rules become axioms. The main 
advantages of SYNLMA stem from the 
independence of the database from the 
inferencing mechanism. This separation 
makes it possible to experiment with 
d i f ferent representations of knowledge and 
di f ferent data bases, l i k e the large 
chemical databases made avai lable by ISI 
and Chemical Abstracts , without 
reprogramming. 

Using LMA (Logic Machine A r c h i t e c t u r e ) , a c o l l e c t i o n of 
P a s c a l programs w r i t t e n by the theorem p r o v i n g group a t 
Argonne N a t i o n a l Laboratory (1-2), we have developed 
SYNLMA (SYNthesis with LMA), an expert system f o r o r g a n i c 
s y n t h e s i s that uses a r e s o l u t i o n based theorem prover as 
the reasoning component. The major advantages of SYNLMA 
stem from the independence of the database and the 
i n f e r e n c i n g . F i r s t , the database can be m o d i f i e d or an 
e n t i r e l y d i f f e r e n t one used without reprogramming the 
d e c i s i o n making u n i t of the system. T h i s c o n v e r s i o n 
i n v o l v e s modifying a s h o r t program that t r a n s l a t e s a 
database r e p r e s e n t a t i o n f o r molecules i n t o a molecular 
r e p r e s e n t a t i o n the theorem prover r e c o g n i z e s ; SYNLMA i s 
not changed a t a l l . Second, the scheme f o r r e p r e s e n t i n g 

0097-6156/86/0306-0244$06.00/0 
© 1986 American Chemical Society 

 P
ub

lic
at

io
n 

D
at

e:
 A

pr
il 

30
, 1

98
6 

| d
oi

: 1
0.

10
21

/b
k-

19
86

-0
30

6.
ch

02
0

In Artificial Intelligence Applications in Chemistry; Pierce, T., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1986. 



20. WANG ET AL. Using a Theorem Prover in Organic Syntheses 245 

a molecule can be changed without changing SYNLMA. Once 
aga i n SYNLMA remains the same, o n l y the i n t e r f a c e between 
the database and SYNLMA w i l l have to be a l t e r e d . T h i s 
f l e x i b i l i t y makes SYNLMA an a t t r a c t i v e a l t e r n a t i v e to 
other o r g a n i c s y n t h e s i s programs. 

SYNLMA performs a r e t r o s y n t h e t i c a n a l y s i s u s i n g a 
s p e c i a l purpose theorem prover b u i l t from LMA components. 
The compound to be s y n t h e s i z e d becomes a theorem to be 
proved. The r e a c t i o n r u l e s and s t a r t i n g m a t e r i a l s become 
axioms. The ch o i c e of a knowledge r e p r e s e n t a t i o n has 
been one of our g r e a t e s t problems. 

Data f o r the theorem prover has to be t r a n s l a t e d 
i n t o c l a u s e s , the o n l y form the theorem prover 
r e c o g n i z e s . A c l a u s e i s the "OR" of one or more l i t e r a l s 
where a l i t e r a l i s a p r e d i c a t e and i t s arguments. A 
p r e d i c a t e i s a p r o p e r t y or r e l a t i o n s h i p that i s tr u e or 
f a l s e . I t s arguments can encompass any number of 
f u n c t i o n s . A f u n c t i o n r e t u r n s t r u e , f a l s e or some other 
v a l u e . The statement "x + y > y + ζ" can be w r i t t e n as a 
c l a u s e u s i n g the f u n c t i o n "Sum" and the P r e d i c a t e 
"GreaterThan." The r e s u l t i n g o n e - l i t e r a l c l a u s e looks 
l i k e t h i s : 

GreaterThan(Sum(x,y),Sum(y,z)) 

(See 3 f o r a formal d e f i n i t i o n of a clause.) 

M o l e c u l a r Representations 

The r e p r e s e n t a t i o n of molecular s t r u c t u r e i n c l a u s e form 
i s c r u c i a l to t h i s r e s e a r c h as i t i s a major determinant 
of the theorem p r o v e r 1 s e f f i c i e n c y . The c l a u s e 
r e p r e s e n t a t i o n a f f e c t s the time i t takes to r e t r i e v e 
r e a c t i o n r u l e s and s t a r t i n g m a t e r i a l s and the time 
necessary to make comparisons between s t r u c t u r e s . The 
importance of the r e l a t i o n s h i p between e f f i c i e n c y and the 
cl a u s e r e p r e s e n t a t i o n i s i l l u s t r a t e d by the d i f f e r e n c e i n 
the run times between p r o v i n g our f i r s t c l a u s e s and 
cu r r e n t ones. Our f i r s t r e p r e s e n t a t i o n scheme was a 
simple one wi t h one p r e d i c a t e f o r each atom except 
hydrogen and one f o r each bond ( F i g u r e l a ) . Using t h i s 
c l a u s e form, a molecule with ten atoms took s e v e r a l hours 
to prove on an IBM mainframe. For SYNLMA to be a v i a b l e 
system f o r o r g a n i c s y n t h e s i s the "proving time" has to be 
reasonable and one key to t h i s i s the c l a u s e 
r e p r e s e n t a t i o n . By u s i n g a s i n g l e p r e d i c a t e to d e s c r i b e 
each atom and i t s "bond environment," the proof of a 
molecule has been reduced to a few seconds. We w i l l 
c ontinue to experiment w i t h the r e p r e s e n t a t i o n f o r 
molecules, t r y i n g to f i n d the r i g h t balance between the 
number of c l a u s e s and t h e i r l e n g t h . We c u r r e n t l y 
r e p r e s e n t s t a r t i n g m a t e r i a l s and compounds th a t we want 
to s y n t h e s i z e ( t a r g e t s ) by a c l a u s e l i s t ( F i g u r e l b ) . In 
t h i s scheme: 
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1. A molecule i s represented by a l i s t of c l a u s e s , where 
each c l a u s e corresponds to one atom and d e s c r i b e s i t s 
environment ( i . e . , i t s bonds, charge, e t c . ) . 

2. The number of atoms i n a molecule does not correspond 
to the number of c l a u s e s i n the c l a u s e l i s t . An atom 
generates a c l a u s e o n l y i f i t i s bonded to two or 
more atoms; otherwise the atom w i l l be ignored as a l l 
i t s i n f o r m a t i o n w i l l be cont a i n e d i n a c l a u s e 
generated by another atom. 

3. Each c l a u s e c o n s i s t s of the p r e d i c a t e c a l l e d 
Fragment, a Bond f u n c t i o n ( B r r l , B211, B l l l l , e t c . ) 
l i s t i n g the types of bonds, such as aromatic, 
resonant, t r i p l e , double, s i n g l e , f o r the atom being 
d e s c r i b e d and an Atom f u n c t i o n f o r t h i s c e n t r a l atom 
of r e f e r e n c e and f o r each atom bonded to i t . A c l a u s e 
i s terminated w i t h a semicolon. 

4. The arguments f o r the Atom f u n c t i o n are: the chemical 
symbol f o r the element, a number as s i g n e d by our 
numbering scheme, the charge on the atom (-1, 0, +1, 
+2 e t c . ) , a s t e r e o c h e m i s t r y f l a g and a r i n g f l a g 
i n d i c a t i n g whether or not the atom i s a member of a 
r i n g . D e f a u l t v a l u e s f o r the l a s t three arguments 
are z e r o . 

H(7) 0(3) C ( l ) ; 
\ // C(2); 

H ( 6 ) _ C(2) _ C ( l ) 0(3); 
/ \ 0(5); 

0(5) H(4) Double(1,3); 
/ Bond(2,1); 

H(8) Bond(2,5); 

F i g u r e l a . Our F i r s t Clause R e p r e s e n t a t i o n f o r a Simple 
Molecule. The numbers f o l l o w i n g the element symbols i n 
the diagram are used to i d e n t i f y atoms i n the c l a u s e s . 

Fragment(B211(Atom(C,1,0,0,0),Atom(0,3,0,0,0), 
Atom(C,2,0,0,0),Atom(H,4,0,0,0))); 

Fragment(Bllll(Atom(C,2,0,0,0),Atom(C,1,0,0,0), 
Atom(0,5,0,0,0),Atom(H,6,0,0,0), 

Atom(H,7,0,0,0))) ; 
Fragment(Β11(Atom(0,5,0,0,0),Atom(C,2,0,0,0), 

Atom(H,8,0,0,0))); 

F i g u r e l b . Our Current Clause R e p r e s e n t a t i o n 
f o r the Same Molecule 

F i g u r e l b i s a simple example of a c l a u s e l i s t and 
the r u l e s f o r c o n s t r u c t i n g i t . In a c t u a l i t y , there are no 
spaces between c h a r a c t e r s i n a c l a u s e . They are i n c l u d e d 
to make i t e a s i e r to grasp the c l a u s e n o t a t i o n . Note, 
that although there are e i g h t atoms i n the molecule o n l y 
three generated c l a u s e s . For example, 0(3) does not 
generate a c l a u s e s i n c e i t would be redundant. The c l a u s e 
f o r 0(3) would be "Fragment(B2(Atom(0,3,0,0,0), 
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Atom(C,1,Ο,Ο,Ο)))" and a l l t h i s i n f o r m a t i o n i s cont a i n e d 
i n the c l a u s e generated by C ( l ) . The f i r s t Fragment 
p r e d i c a t e i n f i g u r e l b i s : 

Fragment(B211(Atom(C,1,0,0,0),Atom(0,3,0,0,0), 
Atom(C,2,0,0,0),Atom(H,4,0,0,0))); 

The Bond f u n c t i o n d e s c r i b e s a c e n t r a l atom of 
re f e r e n c e and the atoms bonded to i t . B211 s t a t e s that 
there i s a c e n t r a l atom of r e f e r e n c e bonded to one atom 
by a double bond (2) and to two other atoms by s i n g l e 
bonds ( 1 ) . The order of the Bond f u n c t i o n arguments 
corresponds to t h i s Bond f u n c t i o n n o t a t i o n . These 
arguments are not simple atomic symbols, but Atom 
f u n c t i o n s that can r e l a t e c o n s i d e r a b l e i n f o r m a t i o n about 
the atom. In t h i s Bond f u n c t i o n , Atom(C,1,0,0,0) i s the 
c e n t r a l atom. The next three arguments are atoms that are 
bonded to t h i s c e n t r a l atom: the f i r s t , Atom(0,3,0,0,0) 
by a double bond; the next two, Atom(C,2,0,0,0) and 
Atom(H,4,0,0,0), by s i n g l e bonds. 

The f i r s t two arguments i n the Atom f u n c t i o n f o r a 
p a r t i c u l a r Atom never change, as they i d e n t i f y the atom. 
Atom(0,3,0,0,0) d e s c r i b e s the oxygen atom numbered 3, as 
opposed to the oxygen atom numbered 5, i n the drawing i n 
Fi g u r e l a . The number does not i n d i c a t e p o s i t i o n . I f 
some r e a c t i o n r e s u l t e d i n the "03" bond to "CI" being 
broken and "03" was r e p l a c e d by some other atom, "03" 
remains "03"; the new atom w i l l have a new number. 
Suppose "03" were to become charged, then the f u n c t i o n 
d e s c r i b i n g i t would become Atom(0,3,-1,0,0), r e f l e c t i n g 
the change. 

Re a c t i o n Rule Database 

Our present r e a c t i o n r u l e database i s made up of 
approximately one hundred r u l e s adapted from a m i c r o f i c h e 
generously sent to us by G e l e r n t e r ( 4 ) . For a g i v e n 
r e a c t i o n , a r u l e s p e c i f i e s the r e a c t a n t s (subgoal) and 
the p r oduct(s) ( g o a l ) , i n connection t a b l e format and any 
c o n s t r a i n t s on t h e i r composition ( F i g u r e 2a). The r u l e s 
are i d e n t i f i e d by chapter and schema numbers. The 
connection t a b l e s are organiz e d as f o l l o w s : 

1. A r e a c t i o n r u l e c o n n e c t i o n t a b l e i n c l u d e s a l l the 
atoms i n both the go a l and subgoal molecules. The 
atoms are numbered u n i q u e l y and the numbering of the 
atoms (see the drawing of the molecules) corresponds 
to the row numbers i n the t a b l e s . The same atom 
appearing i n both a goa l and subgoal keeps the same 
number. I f an atom i n the goal does not appear i n the 
subgoal, the subgoal connection t a b l e w i l l s t i l l 
i n c l u d e the atom as a row atom but a l l v a l u e s to the 
r i g h t w i l l be zero. 

2. The symbols i n the f i r s t column (to the r i g h t of the 
row number) i d e n t i f y the atom or v a r i a b l e d e s c r i b e d 

American Chemical Society 
Library 

1155 16th St.f N.W. 
Washington, D.C. 20036 
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by the row. I t w i l l be r e f e r r e d to as the row atom. 
There are three types of row atom symbols: p e r i o d i c 
t a b l e n o t a t i o n f o r elements; the v a r i a b l e #J which 
r e p r e s e n t s a h a i i d e ; and a v a r i a b l e composed of a 
d o l l a r s i g n f o l l o w e d by a number($1,$2...). The 
"$/even numbered" v a r i a b l e s can represent any 
s u b s t r u c t u r e or any atom. The "$/odd numbered" 
v a r i a b l e s can rep r e s e n t any s u b s t r u c t u r e or any atom 
except hydrogen. The f o l l o w i n g four s t r u c t u r e s c o u l d 
be e q u i v a l e n t . The s t r u c t u r e s range from the ve r y 
s p e c i f i c on the l e f t where the atom p o i n t e d to i s 
d e f i n e d as a c h l o r i n e atom to the very g e n e r a l where 
the atom or s u b s t r u c t u r e can be anything. 

0 
I I 
C 

/ \ 
$1 CI 

c 
/ \ 

$1 #J 

0 
11 
c 

/ \ 
$1 $1 

c 
/ \ 

$1 $2 

s p e c i f i c > g e n e r a l 

3. The next twelve columns ( s i x p a i r s : up, down, l e f t , 
r i g h t , i n , out) d e s c r i b e the bonds of the atom i n 
column one. The f i r s t number i n each p a i r i s the row 
index, i d e n t i f y i n g the atom bonded to the row atom. 
The second number i s one of f i v e bond types (1: 
s i n g l e , 2: double, 3: t r i p l e , 16: resonant bond, 
8 : s i n g l e bond between an atom and a resonant 
s t r u c t u r e ) . I f the row atom does not appear i n the 
go a l or subgoal s t r u c t u r e s the d e f a u l t v a l u e s are 
zero. 

4. The l a s t s i x t e e n columns c o n t a i n symmetry 
i n f o r m a t i o n . 

F i g u r e 2a i s the G e r l e r t n e r r e a c t i o n r u l e f o r the 
" r e a c t i o n of magnesium w i t h a l k y l bromides". The number 
of ( s i x ) and type of row atoms (Mg, Br, C, $2, $4, $6) 
are i d e n t i c a l f o r both the the g o a l and subgoal 
connection t a b l e s and i s a composite of a l l atoms i n both 
the product and r e a c t a n t s . D i f f e r e n c e s between g o a l and 
subgoal s t r u c t u r e s are i n d i c a t e d by the numbers to the 
r i g h t of row atoms and not t h e i r presence or absence i n 
the t a b l e s . For example, i n the g o a l t a b l e Row Atom 1, 
magnesium, i s bonded to Row Atom 2 by a s i n g l e bond 
(index:bond = 2:1) and to Row Atom 3 by a s i n g l e bond 
(index:bond = 3:1). While magnesium does not appear i n 
the subgoal s t r u c t u r e , i t i s s t i l l the f i r s t row atom i n 
the s u b g o a l 1 s t a b l e . But the va l u e s f o r bond indexes and 
bond types are now zero; that i s , Mg(l) i s not bonded to 
other atoms i n the t a b l e . An example of an atom th a t 
appears i n both the go a l and subgoal s t r u c t u r e s i s Row 
Atom 3. One of the atoms that C(3) i s bonded to changes 
(Br to Mg) but C(3) i s c o n s i d e r e d the same throughout the 
r e a c t i o n and keeps the same index. 
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$2(4) $4(5) 
\ / 

C(3) 
/ \ 

Br(2) $6(6) 

$2(4) $4(5) 
\ / 

C(3) 
/ \ 

Mg(l) $6(6) 
/ 

Br(2) 

Diagram i l l u s t r a t i n g the f o l l o w i n g r e a c t i o n r u l e 

Schema 2 

Schema name i s r e a c t i o n of magnesium with a l k y l 
bromides. The s t a r t i n g v a l u e s f o r ease, y i e l d and 
confidence a r e : 90, 95, 100. The reagent c l a s s f o r 
t h i s schema i s : 0. T h i s i s a s i n g l e a p p l i c a t i o n 
schema. The maximum no. of n o n i d e n t i c a l subgoal 
molecules allowed f o r t h i s schema i s 9. 

The Transformation P a t t e r n s : 

Goal TSD 

no elem up down l e f t r i g h t i n out 

1 Mg 2 1 3:1 0:0 0:0 0:0 0:0 0000000000000000 
2 Br 1 1 0:0 0:0 0:0 0:0 0:0 0000000000000000 
3 C 1 1 4:1 5:1 6:1 0:0 0:0 0000000000000000 
4 $2 3 1 0:0 0:0 0:0 0:0 0:0 0000000000000000 
5 $4 3 1 0:0 0:0 0:0 0:0 0:0 0010000000000000 
6 $6 3 1 0:0 0:0 0:0 0:0 0:0 0010000000000000 

Subgoal TSD 

no elem up down l e f t r i g h t i n out 

1 Mg 0 0 0:0 0:0 0:0 0:0 0:0 0000000000000000 
2 Br 3 1 0:0 0:0 0:0 0:0 0:0 0000000000000000 
3 C 2 1 4:1 5:1 6:1 0:0 0:0 0000000000000000 
4 $2 3 1 0:0 0:0 0:0 0:0 0:0 0000000000000000 
5 $4 3 1 0:0 0:0 0:0 0:0 0:0 0000000000000000 
6 $6 3 1 0:0 0:0 0:0 0:0 0;0 0000000000000000 

Schema Tests : Can' t have any of the f o l l o w i n g a t t r i b u t e s : 

136 T h i o l 
126 Oxime 
122 Diazoketone 

(and others) 

F i g u r e 2a. G e r l e r n t e r r e a c t i o n r u l e . 

The c o n s t r a i n t s l i s t e d under the schema t e s t s g i v e 
l i m i t a t i o n s on the p o s s i b l e v a l u e s of the v a r i a b l e s i n 
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column one, e t c . The r e a c t i o n r u l e s can be c h a r a c t e r i z e d 
as s i n g l e or m u l t i s t e p , where a m u l t i s t e p r e a c t i o n i s 
d e f i n e d as a r u l e that can be r e w r i t t e n as a s e r i e s of 
s i n g l e step r e a c t i o n s . An example of a s i n g l e and 
m u l t i s t e p r e a c t i o n r u l e f o r a malonic e s t e r s y n t h e s i s 
f o l l o w s . 

M u l t i s t e p : 

0 
M 1) NaOET 

ET-O-C 2) RX 0 CH3 
\ 3) OH-,H20 I I / 
CH2 > H-0- C -CH2-C -H 

/ 4) H+ \ 
ET-O-C CH3 

1 I 
0 

S i n g l e Step E q u i v a l e n t : 

0 0 
II II 

ET-O-C ET-O-C 
\ \ 
CH2 + NaOET > CH-

/ / 
ET-O-C ET-O-C 

II II 
0 0 

0 0 
II II 

ET-O-C H CH3 ET-O-C CH3 
\ - \ / \ / 
CH + C > CH-C-H 

/ / \ / \ 
ET-O-C Br CH3 ET-O-C CH3 

II II 
0 0 

0 0 
II II 

ET-O-C CH3 H-O-C CH3 
\ / OH-, H20 \ / 
CH-C-H > CH-C-H 

/ \ / \ 
ET-O-C CH3 H-O-C CH3 

I' JJ 0 0 
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Ο 

H-O-C CH3 1) H+ Ο CH3 
\ / 2) -C02 I I / 
CH-C-H > H-O- C -CH2-C-H 

/ \ \ 
H-O-C CH3 CH3 

I I 
Ο 

In t h i s example a four s t e p s y n t h e s i s i s a l s o 
expressed as a very g e n e r a l one s t e p r e a c t i o n . 

We have w r i t t e n a program that t r a n s l a t e s the 
c o n n e c t i o n t a b l e s i n t o c l a u s e s , a form that the theorem 
prover can process, and s t o r e s them i n f i l e s o r g a n i z e d 
f i r s t by goal or subgoal and then by the f u n c t i o n a l 
groups i n the molecule. The c o n s t r a i n t s are i n another 
se t of f i l e s . SYNLMA uses these f i l e s ; i t does not use 
the f i l e s of G e r l e r n t e r formatted r u l e s . In a d d i t i o n to 
the r e a c t i o n r u l e database, we have f u n c t i o n a l group and 
s t a r t i n g m a t e r i a l databases ( a l s o i n c l a u s e form). 

The T r a n s l a t i o n of R e a c t i o n Rules i n t o Clauses 

Each atom i n a t a r g e t or s t a r t i n g m a t e r i a l molecule i s 
d e f i n e d . T h i s i s not t r u e f o r a r e a c t i o n r u l e or 
f u n c t i o n a l group molecule where p a r t s of the molecule are 
represented by v a r i a b l e s ($1, $J, e t c . ) . SYNLMA t r e a t s a 
r e a c t i o n r u l e or f u n c t i o n a l group s t r u c t u r e as a 
molecule, even though some of i t s atoms are unknown, and 
r e p r e s e n t s i t i n e s s e n t i a l l y the same form as known 
molecules ( F i g u r e 2b). A molecule with a v a r i a b l e 
s u b s t r u c t u r e d i f f e r s from a known molecule i n the 
f o l l o w i n g : 

1. The p r e d i c a t e s are ORed f o r a molecule w i t h v a r i a b l e s 
(one c l a u s e per molecule) i n s t e a d of ANDed (one l i s t 
of c l a u s e s f o r each mo l e c u l e ) . 

2. The s i g n of the p r e d i c a t e i s negative i n s t e a d of 
p o s i t i v e . 

3. V a r i a b l e atoms or s u b s t r u c t u r e s are r e p r e s e n t e d by 
the l e t t e r "y" f o l l o w e d by a number ( y l , y2) or the 
l e t t e r " j " ( y j ) . " Y j " r e p r e s e n t s a h a l i d e ; the 
"y/even numbered" v a r i a b l e s can represent any 
s u b s t r u c t u r e or atom; and the "y/odd numbered" can 
represent any s u b s t r u c t u r e or atom except hydrogen. 

4. The Atom f u n c t i o n s have v a r i a b l e s f o r arguments, not 
c o n s t a n t s . 

5. Each goal or subgoal c l a u s e i s terminated w i t h the 
p r e d i c a t e Rxnrule whose f i r s t argument i s a r e a c t i o n 
r u l e i d e n t i f i c a t i o n number. A f t e r t h i s number, the 
p r e d i c a t e uses the f u n c t i o n LL ( f o r l i n k e d l i s t ) to 
l i s t a l l the atoms i n the connection t a b l e . 
F u n c t i o n a l group c l a u s e s are terminated w i t h the 
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s i m i l a r f u n c t i o n Funcgr. The main d i f f e r e n c e between 
these two f u n c t i o n s i s that Funcgr o n l y l i s t s atoms 
or s u b s t r u c t u r e s that are i n the molecule being 
d e s c r i b e d , while the r e a c t i o n r u l e l i s t s a l l atoms i n 
the connection t a b l e r e g a r d l e s s of whether they 
appear i n the s t r u c t u r e ( s ) being d e s c r i b e d . 

R e a c t i o n Rule Chapter 20, Schema 2: GOAL 

-Fragment(Bl1(Atom(Mg,xl,s1,tl,ul),Atom(Br,x2,s2,t2,u2), 
Atom(C,x3,s3,t3,u3)))| 

-Fragment(Bllll(Atom(C,x3,s3,t3,u3), 
A t o m ( M g , x l , s l , t l , u l ) , y 2 , y 4 , y 6 ) ) | 

R x n r u l e ( 2 0 2 , L L ( A t o m ( M g , x l , s l , t l , u l , ) , 
LL(Atom(Br,x2,s2,t2,u2), 
LL(Atom(C,x3,s3,t3,u3), 
L L ( y 2 , L L ( y 4 , L L ( y 6 , N I L ) ) ) ) ) ) ) ; 

R e a c t i o n Rule Chapter 20, Schema 2: SUBGOAL 

-Fragment(Bllll(Atom(C,x3,s3,t3,u3), 
Atom(Br,x2,s2,t2,u2),y2,y4,y6))| 

R x n r u l e ( 2 0 2 , L L ( A t o m ( M g , x l , s l , t l , u l , ) , 
LL(Atom(Br,x2,s2,t2,u2), 
LL(Atom(C,x3,s3,t3,u3), 
L L ( y 2 , L L ( y 4 , L L ( y 6 , N I L ) ) ) ) ) ) ) ; 

F i g u r e 2b. Clause r e p r e s e n t a t i o n of the go a l and subgoal 
i n r e a c t i o n r u l e Chapter 20, Schema 2. 

A comparison between the connection t a b l e s i n f i g u r e 
2a and t h e i r c l a u s e r e p r e s e n t a t i o n s i n f i g u r e 2b 
i l l u s t r a t e s the c o n v e r s i o n r u l e s and some of the 
d i f f e r e n c e s between a known molecule's c l a u s e and a 
r e a c t i o n r u l e c l a u s e . Two row atoms, Mg(l) and C(3), i n 
the g o a l and o n l y C(3) i n the subgoal are bonded to two 
or more atoms and t h e r e f o r e generate p r e d i c a t e s . U n l i k e 
the c l a u s e l i s t ( f i g u r e lb) these p r e d i c a t e s are not 
separated by semicolons ( i m p l i c i t l y ANDed one p r e d i c a t e 
c l a u s e s ) but are j o i n e d by a v e r t i c a l bar, the symbol f o r 
OR. The p r e d i c a t e , Fragment, i s c o n s t r u c t e d i n the same 
way as f o r a known molecule w i t h the e x c e p t i o n that some 
of the Atom f u n c t i o n s arguments are v a r i a b l e s (e.g. x l , 
s i , t l , e t c . ) . V a r i a b l e s are not w r i t t e n u s i n g Atom 
f u n c t i o n s (they are unknowns) but are simply l i s t e d i n 
the proper order i n the bond f u n c t i o n . The c l a u s e i s 
terminated w i t h an i d e n t i f y i n g Rxnrule p r e d i c a t e that 
l i s t s the r e a c t i o n r u l e chapter and schema (chapter 
number * 1000 + schema number) and every row atom i n the 
con n e c t i o n t a b l e . Note that the Rxnrule p r e d i c a t e i s 
i d e n t i c a l f o r the goal and subgoal, l i n k i n g the two 
c l a u s e s together. 
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The S y n t h e t i c Design Process 

SYNLMA i s c u r r e n t l y capable of ha n d l i n g the s y n t h e t i c 
d e s i g n f o r compounds the s i z e of the a n a l a g e s i c Darvon 
u s i n g an i n - c o r e database of approximately a hundred 
r e a c t i o n s . The s y n t h e s i s process s t a r t s w i t h the input 
of the s t r u c t u r e of the compound ( i n c l a u s e form) that we 
are t r y i n g to s y n t h e s i z e . Next, an i n t e r n a l 
r e p r e s e n t a t i o n of the compound i s generated. T h i s 
becomes the t a r g e t (the theorem to be proved). The 
theorem prover begins by i d e n t i f y i n g the t a r g e t ' s major 
f u n c t i o n a l groups and uses them as keys i n t o the 
database. As the sea r c h begins f o r r e a c t i o n s and 
compounds from which the t a r g e t can be s y n t h e s i z e d , the 
theorem prover o n l y searches the goa l f u n c t i o n a l group 
f i l e s corresponding to the f u n c t i o n a l groups i t has 
a l r e a d y found i n the t a r g e t . For example, i f the t a r g e t 
contained an a c i d and a benzene r i n g , the theorem prover 
would searc h the goal f i l e s c o n t a i n i n g a c i d s and benzene 
r i n g s f o r a matching molecular s t r u c t u r e . When a 
matching s t r u c t u r e i s found, i t s corresponding subgoal 
becomes the new goal and i s t r a n s l a t e d i n t o the i n t e r n a l 
r e p r e s e n t a t i o n f o r a molecule. Then the f u n c t i o n a l group 
i d e n t i f i c a t i o n and the search and match process i s 
repeated. T h i s process of examining a l t e r n a t i v e r e a c t i o n 
paths and s e t t i n g up in t e r m e d i a t e compounds as new go a l s 
i s repeated u n t i l a l l the p o s s i b l e r e a c t i o n s can be 
performed u s i n g the a v a i l a b l e compounds. 

T h i s process of working backward from the a v a i l a b l e 
s t a r t i n g m a t e r i a l s , c a l l e d " r e t r o s y n t h e t i c a n a l y s i s " by 
the o r g a n i c chemist, i s immediately recognized as an 
example of backward c h a i n i n g by workers i n a r t i f i c i a l 
i n t e l l i g e n c e . T h i s backward c h a i n i n g process c r e a t e s a 
l a r g e problem s o l v i n g t r e e i n which goa l s or nodes 
correspond to compounds wh i l e the branches correspond to 
p o s s i b l e r e a c t i o n pathways. (A more d e t a i l e d d e s c r i p t i o n 
of how SYNLMA handles t h i s process can be found i n 5-6.) 

An example of a problem s o l v i n g t r e e f o r the 
s y n t h e s i s of Darvon appears i n F i g u r e 3. The t r e e 
c o n t a i n s both AND nodes and OR nodes (7). The AND 
branches, connected by double a r c s , i n d i c a t e that both 
compounds are r e q u i r e d to make the compound above them. 
The OR branches (there are three OR paths to make 
compound II) i n d i c a t e d i f f e r e n t routes f o r making the 
compound. The te r m i n a l nodes corresponding to s t a r t i n g 
m a t e r i a l s are enclosed i n boxes. At present, a branch i s 
terminated when the number of c l a u s e s i n the c l a u s e l i s t , 
the i n t e r n a l r e p r e s e n t a t i o n of the g o a l , i s l e s s than or 
equal to s i x or the c l a u s e l i s t matches the c l a u s e l i s t 
of a s t a r t i n g m a t e r i a l molecule. 

C u r r e n t l y , SYNLMA generates one problem s o l v i n g t r e e 
f o r each molecule that i t s y n t h e s i z e s . Some of the t r e e ' s 
paths are v i a b l e s y n t h e t i c r o u t e s , others are deadends. 
U n f o r t u n a t e l y , good and bad paths are pursued w i t h the 
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same i n t e n s i t y and a l o t of time i s spent pursuing 
deadend paths. The program has the p o t e n t i a l to be more 
c l e v e r i n i t s approach. I t can generate a number of 
t r e e s of v a r y i n g s p e c i f i c i t y . F i r s t , SYNLMA c o u l d 
generate a t r e e of m u l t i s t e p r e a c t i o n r u l e s . A t r e e 
b u i l t from m u l t i s t e p r e a c t i o n r u l e s would be q u i c k e r to 
b u i l d than one where each s t e p i s s p e c i f i e d . Then a 
second, more s p e c i f i c t r e e c o u l d be generated u s i n g the 
knowledge gained from the f i r s t . For example, some 
s y n t h e t i c pathways c o u l d be r u l e d out on the b a s i s of the 
m u l t i s t e p r u l e s . The more pathways that can be 
e l i m i n a t e d on the b a s i s of one m u l t i s t e p r u l e as opposed 
to a s e r i e s of s i n g l e s t e p r u l e s , the f a s t e r the system 
can work. For paths t h a t appear promising, the products 
and r e a c t a n t s i n the f i r s t t r e e form p a i r s of t a r g e t s and 
s t a r t i n g m a t e r i a l s t h a t w i l l d i r e c t the growth of the 
second t r e e . A s y n t h e t i c path that works i n the more 
gene r a l t r e e does not n e c e s s a r i l y work when SYNLMA t r i e s 
to f i l l i n the gaps between nodes w i t h s i n g l e s t e p r u l e s . 
Some other c o n d i t i o n , l i k e a s u b s t r u c t u r e c o n s t r a i n t , may 
b l o c k the pathway. So a combination of the two 
approaches, g e n e r a l and s p e c i f i c , i s necessary. Two 
databases, one of s i n g l e s t e p r u l e s , the other m u l t i s t e p , 
are necessary to implement the two t r e e system. Since 
our database i s a mixture of these two types of r u l e s , a 
two t r e e system i s not yet p o s s i b l e . I t w i l l have to 
wait u n t i l we can separate our database i n t o two p a r t s . 

Future D i r e c t i o n s 

A f t e r the two t r e e system i s f u n c t i o n i n g , we would l i k e 
to add a t h i r d t r e e d e f i n i t i o n l a y e r that precedes the 
o t h e r s and determines an o v e r a l l s y n t h e t i c s t r a t e g y . The 
focus d u r i n g t h i s stage i s on the r e c o g n i t i o n of cogent 
s u b s t r u c t u r e s , thus i t r e q u i r e s a database of about 200 
compounds i n s t e a d of r e a c t i o n r u l e s . The t a r g e t w i l l be 
compared to these compounds r a t h e r than r e a c t i o n r u l e s 
and "matches" one of these compounds when a l a r g e 
s u b s t r u c t u r e i n the t a r g e t i s i d e n t i f i e d i n a compound. 
T h i s matching compound now becomes the new t a r g e t and the 
process i s repeated, r e s u l t i n g i n a much more a b s t r a c t 
problem s o l v i n g t r e e . Then the two-tree system i s 
a p p l i e d to t h i s t r e e to d e f i n e t a r g e t s and s t a r t i n g 
m a t e r i a l s . The system moves from the g e n e r a l to the 
s p e c i f i c , u s i n g the i n f o r m a t i o n from the f i r s t t r e e to 
b u i l d the second t r e e and i n f o r m a t i o n from the second 
t r e e to b u i l d the t h i r d . The t h i r d and f i n a l t r e e 
d e s c r i b e s the s p e c i f i c s t eps i n the s y n t h e t i c pathway. 

I f an o r g a n i c s y n t h e s i s system i s to be of p r a c t i c a l 
use to chemists, i t must be s e t up to i n t e r f a c e with 
l a r g e chemical databases such as the databases made 
a v a i l a b l e by ISI (the I n s t i t u t e f o r S c i e n t i f i c 
Information) and by Chemical A b s t r a c t s . We have s t a r t e d 
to convert our database to the CAS connection t a b l e 
format to s i m p l i f y database i n t e r f a c e s . F o r t u n a t e l y , 
t h i s does not r e q u i r e changing SYNLMA. We o n l y need to 
w r i t e a new program to t r a n s l a t e connection t a b l e s i n t o 
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c l a u s e s , but t h i s i s a s h o r t program independent of 
SYNLMA. 

From the user's p o i n t of view the most important 
step i n improving SYNLMA i s to r e w r i t e and expand the 
user i n t e r f a c e . C u r r e n t l y , the compound we want to 
s y n t h e s i z e i s entered i n c l a u s e form and the program i s 
run i n batch mode. T h i s means that the user cannot 
a f f e c t SYNLMA's behavior once the system s t a r t s working 
on a s y n t h e s i s . We p l a n to develop an i n t e r a c t i v e system 
where the user e n t e r s the i n i t i a l t a r g e t molecule by 
drawing i t on the s c r e e n u s i n g a g r a p h i c s package and i s 
a b l e to monitor the progress of the theorem prover. The 
user w i l l be a b l e c o n t r o l i t s a c t i o n s by removing 
i n t e r m e d i a t e t a r g e t s and s u g g e s t i n g s t a r t i n g m a t e r i a l s . 

Summary 

The success of SYNLMA shows that i t i s p o s s i b l e to base 
an expert system on a theorem prover. The advantage of 
u s i n g a theorem prover as de d u c t i v e component i s t h a t i t 
al l o w s us to experiment w i t h a number of d i f f e r e n t 
r e p r e s e n t a t i o n s f o r chemical i n f o r m a t i o n . The same 
f l e x i b i l i t y makes i t easy to add new s t a r t i n g m a t e r i a l s 
and r e a c t i o n r u l e s from l a r g e commercial o n l i n e 
databases. 
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Acquisition a n d Represen ta t ion of K n o w l e d g e 

for E x p e r t Sys tems in O r g a n i c C h e m i s t r y 

J. Gasteiger, M. G. Hutchings1, P. Löw, and H. Saller 

Institute of Organic Chemistry, Technical University Munich, D-8046 Garching, 
West Germany 

Many of the models used by the organic chemist to ex
p la in his observations provide a good basis for repre
senting chemical knowledge in an expert system. Such 
knowledge can be acquired by developing algorithms for 
these models and parameterizing them with the aid of 
physical or chemical data. This i s demonstrated for 
concepts such as e lectronegat ivi ty , polarizability, or 
the inductive and resonance effects. Combination of 
these models permits construction of systems which 
make predictions worthy of an experienced chemist. 
This i s exemplified by EROS, a system that can predict 
the course of chemical reactions or can design organic 
syntheses. 

Chemistry - as a s c i e n t i f i c and technological d i s c i p l i n e - has some 
unique characteristics. In contrast to physics, where most of the 
underlying laws can be given i n e x p l i c i t and sometimes simple mathe
matical form, many of the laws governing chemical phenomena are 
either not e x p l i c i t l y known, or else have a mathematical form that 
s t i l l eludes an exact solution. S t i l l , chemistry does provide - and 
rests on- quantitative data of physical or chemical properties of 
high numerical precision. A search for quantitative relationships i s 
thus suggested, despite the lack of a tractable theoretical basis. 

Chemists have accumulated over the last two centuries an enormous 
amount of information on compounds and reactions. However, this i n 
formation appears largely as a collection of individual facts devoid 
of any comprehensive structure or organization. This i s most pain
f u l l y f e l t by the novice studying chemistry. However, the more he 
progresses i n his s c i e n t i f i c d i s c i p l i n e , the more concepts and rules 
emerge that allow him to bring order into his knowledge. These con
cepts include p a r t i a l atomic charges, electronegativity, inductive, 
resonance, or s t e r i c effects, which have a l l been coined by the 
1 Current address: Organics Division, Imperial Chemical Industries pic, Blackley, 
Manchester M9 3DA, England 

0097-6156/86/0306-0258$06.00/0 
© 1986 American Chemical Society 
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chemist do derive models for the principles governing chemical obser
vations. The design of these models has involved the reduction of 
collections of individual observations to general principles. 

Throughout this paper we use the term model. It w i l l refer to 
concepts of varying degrees of sophistication and specification. A 
model can be a notion developed by the chemist to c l a s s i f y an ob
servation, i t can be an e x p l i c i t procedure for the calculation of a 
value for a physico-chemical concept, or, i t can refer to a mathe
matical equation for the prediction of an observation. We intention
a l l y do not distinguish between these different uses in order to 
stress the point that the development of a model to further under
standing i s quite a common approach i n science. 

The huge amount of information available i n chemistry early on 
invited the use of the computer for storing and retrieving inform
ation. Documentation systems have been developed, and are being 
maintained, that contain a sizeable amount of the known chemical 
information. Thus, they have gained importance as a knowledge base 
for assisting the chemist i n solving his problems. Clearly, the con
struction of a large chemical information r e t r i e v a l system i s an 
enormous endeavor. Furthermore, the work w i l l never be complete as 
new information i s constantly being gathered and should be incorpo
rated into the system. Beyond that, pure r e t r i e v a l can only give 
access to known information. Without appropriate structuring of 
information no predictions can be made of new information. 
Thus, some of the most important and interesting problems of a 
chemist could not be tackled. 
These are: 
1. What w i l l be the properties of an unknown compound? 
2. What i s the structure of a new compound? 
3. How can a compound with a new structure be synthesized? 

These questions f a l l into the domains of structure-activity re
lationships, structure elucidation, and synthesis design, respective
l y . They a l l ask for new information not yet known e x p l i c i t l y . That 
i s , they require predictions. 

I t would be highly desirable to reduce the individual facts i n 
an information r e t r i e v a l system to general principles just as the 
chemist has done i n devising his empirical concepts mentioned pre^ 
viously. Such a reduction of information to i t s essential contents 
asks for insights, to transform information to knowledge. 

We have not attempted to make the computer do the job of auto
matically finding the fundamental laws of chemistry from a compilation 
of individual facts. Rather, we have e x p l i c i t l y b u i l t into the 
computer specific models that we believe can represent the structure 
of chemical information. We were guided i n this endeavor by concepts 
derived by the chemist and have tried to develop models and proced
ures that quantify these concepts. In doing so we have put more 
emphasis on the acquisition and representation of knowledge than on 
problem-solving techniques. In any expert system the quality of the 
knowledge base i s of primary and desicive importance. 

We are mainly concerned with the development of EROS (Elabora
tion of Reactions for Organic Synthesis), a program system for the 
prediction of chemical reactions and the design of organic syntheses 
(J_-_3) . This system does not rely on a database of known reactions. 
Instead, reactions are generated i n a formal manner by breaking and 
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making bonds and s h i f t i n g electrons. In Figure 1 one of those reac
tion schemes contained i n the program i s shown. This scheme, breaking 
two bonds and making two new ones i s quite important; many rather 
diverse reactions follow that scheme. Such a scheme can be applied i n 
both a forward search (reaction prediction; la and lb) as well as i n 
a retrosynthetic search (synthesis design; l c ) . 

Clearly, not a l l reactions obtained by such a formal scheme can 
be r e a l i s t i c ones. In fact, many have no chemical r e a l i t y (cf. Id). 
A major task in program development i s therefore, to find ways of 
automatically extracting the chemically feasible reactions from 
amongst the formally conceivable ones. To this end a modelling of 
chemical r e a c t i v i t y seems indispensable. 

Finding the Pieces 

The high quality numerical data on physical and chemical properties 
of atoms, molecules, and compounds present a good starting point for 
the development of a knowledgebase. The task i s to condense the i n 
formation contained i n a series of individual data into a quantita
tive parametric model which w i l l reproduce the primary data with a 
certain accuracy. I f this i s successful i t can be used to predict 
new, as yet unknown data for which the same kind of accuracy can be 
expected. Furthermore, the parameters could also be of use i n other 
models which i n turn give new types of data. 

In developing models for treating chemical r e a c t i v i t y we have 
been guided by the concepts used by the organic chemist i n discussing 
the causes of organic reactions and their mechanisms. Examples of 
the more prominent effects are shown i n Figure 2. 

Our intention has been to derive models that can quantify these 
various effects and thereby build a basis for a quantitative treat
ment of chemical r e a c t i v i t y . The following simple models that enable 
calculations to be performed rapidly on large molecules and big data 
sets have been developed. 

Heats of Reaction and Bond Dissociation Energies. The simplest form 
of a model i s an a d d i t i v i t y scheme that derives a molecular property 
through summation over increments assigned to atoms, bonds or groups 
(4). We have explored such an approach by assuming that heats of 
formation can be estimated from values assigned to direct (1,2) and 
next nearest (1,3) atom-atom interactions (5). Values for these para
meters have been derived from experimental heats of formation through 
multi-linear regression analyses (6). As an example, the heats of 
formation of 49 alkanes have been condensed into four fundamental 
parameters that reproduce the data with a standard error of 0.8 7 kcal 
/mol (6). 

This amounts to a sizeable reduction of the information that has 
to be stored, while conserving a rather good accuracy i n the data. 
With these four parameters unknown heats of formation of alkanes can 
be estimated by the a d d i t i v i t y scheme with a s i m i l a r l y high accuracy. 
This approach has been extended to other series of compounds. 

Using these parameters for the estimation of the heats of for
mation of starting materials and products of a reaction and then 
taking the difference i n these two numbers provides values for reac
tion enthalpies. Only parameters of those substructures that are 
changed i n a reaction need be considered. 
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I — J ι J 
+ —> I + I 

K — L Κ L 

a) 
CH3—Br 

H O — Η 

C H , Br 

I + I 
HO Η 

b) 

CH2=CH-C=N 
+ 

0 H-OH 

CH9=CH—C=N 
2 I I : 

H OH 

C H ^ C H - Ç - H 
H 

O-N-OH 

d) 
CH3— Br 

+ 
H—OH + CH. Br 

I + I 
H OH 

Figure 1. Formal reaction scheme with examples 
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Furthermore, the effects of strained rings and of aromatic com
pounds must be considered (7), and algorithms that perform these tasks 
have been developed (8,9). Values on bond dissociation energies can 
be calculated by extending the parametrization to radicals (10). 
Table I gives results obtained for methyl propionate; experimental 
values are from compounds containing similar structural situations 
around the bond being considered (Π). 

Table I. Comparison between calculated and experimental bond di s 
sociation energies i n methyl propionate (in kcal/mol) 

ι 2

 2Λ 
C H - C H 2 - C < 0 _ 

5 6 3 

bond BDE (calc) BDE (exp.)(ref. 
C'-H 98.7 98.2 ± 1 

C2-H 93.4 92.3 ± 1.4 

C6-H 93.8 94 1 2 

c ' - c 2 85.0 86.4 ± 1 

c 2 - c 3 83.6 81.2 - 1 

c 3 - o 4 123.4 -
c 3 - o 5 96.9 95.5 i 1.5 

c 6 - o 5 86.4 83.6 * 1.5 

An a d d i t i v i t y scheme i s a rather simple model, but despite t h i s , 
such schemes can be applied to a variety of physical data of mole
cules. Benson and Buss have c l a s s i f i e d a d d i t i v i t y rules into suc
cessive approximations and have given examples of their a p p l i c a b i l i 
ty (40. According to their terminology the zero-order approximation 
of a molecular property i s given by ad d i t i v i t y of atomic properties, 
first - o r d e r approximation by ad d i t i v i t y of bond properties, and 
second-order approximation by ad d i t i v i t y of group properties. More 
recent widespread use of a d d i t i v i t y schemes i s found i n methods |or 
estimating spectroscopic data, i n particular those for deriving H-
or C-NMR chemical sh i f t s of organic molecules. 

P o l a r i z a b i l i t y Effects. The next model demonstrates that an addi
t i v i t y scheme can be combined with other forms of mathematical re
lations to extract the fundamental parameters of a model from primary 
information. And furthermore, i t shows than an ad d i t i v i t y scheme 
useful for the estimation of a global molecular proparty can be modi
fied to obtain a l o c a l , s i t e specific property. 

M i l l e r and Savchik (12) have given Equation 1 for estimating the 
mean p o l a r i z a b i l i t y , a, of a molecule, where Ν i s the to t a l number 
of electrons i n the molecule, and τ.is a p o l a r i z a b i l i t y contribution 
for each atom i , characteristic of èhe atom type and i t s hybridi
zation state. 
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ά = | ( Σ τ . ) 2 (!) 
i 

Mean molecular p o l a r i z a b i l i t y can be calculated through the 
Lorenz-Lorentz- Equation from refractive index, η , molecular weight, 
MW, and density, d, of a compound, demonstrating that the parameters 
T£ can be derived from these elementary molecular properties (Figure 
3). 

P o l a r i z a b i l i t y i s a measure of the relative ease of distortion 
of a dipolar system when exposed to an external f i e l d . The s t a b i l i 
zation energy due to the interaction between an external charge and 
the induced dipole i s highly distance-dependent and can be calcula
ted through c l a s s i c a l electrostatics. The situation i s , however, 
less clearly defined when the charge resides within the molecule 
that i s being polarized. To model the s t a b i l i z a t i o n resulting from 
p o l a r i z a b i l i t y i n these situations, we have modified Equation 1 by 
introducing a damping factor d n i ~ ^ , where 0 < d < l , and n£ gives the 
smallest number of bonds between an atom i and the charge center 
(Equation 2)(13) · 

» d - i < ? * n i " S > 2 <2> 
i 

α i s called effective p o l a r i z a b i l i t y , as the damping factor models 
the distance dependent attenuation of the s t a b i l i z a t i o n effect. 
Furthermore, this factor gives different values for for the same 
molecule depending on where the charge center i s located. An alterna
tive a d d i t i v i t y scheme (14) for estimating mean molecular polariza
b i l i t y can be s i m i l a r l y modified to obtain values of effective 
p o l a r i z a b i l i t y (15). The significance of these values has been demon
strated by correlation with physical data (13). 
Charge Distribution, Inductive and Resonance Effects. U n t i l now, 
the discussion has been concerned with models based on a d d i t i v i t y 
schemes and their modifications. However, we have also explored 
other types of models that can be put into algorithms that are fast, 
albeit less convenient for pencil and paper application. 

This i s true for our procedure for calculating p a r t i a l atomic 
charges i n σ-bonded molecules (16). The method starts from Mulliken's 
d e f i n i t i o n of electronegativity, χ, derived from atomic ionization 
potentials, IP, and electronegativities, EA (Equation 3)(17). 

χ = 0.5 (IP + EA) (3) 

Electronegativity was considered to be dependent both on o r b i t a l 
type, and on the occupation number of an o r b i t a l (or, equivalently, 
the charge on an atom). On bond formation, negative charge is trans
ferred from the less to the more electronegative atom. Because of 
the charge dependence, the electronegativities change i n the sense 
that they tend to equalize. The problem of the mutual dependence of 
electronegativity on charge and of charge transfer on electronega
t i v i t y was solved by an interative procedure that takes e x p l i c i t ac
count of the molecular topology (16). This gives access to a s e l f -
consistent set of values of p a r t i a l charges and associated residual 
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— heat of reaction and bond dissociation energy 

H3C—H + Χ—X ^ H3C— X + H—X 

— charge distribution 
δ+.Ο 

H 3 C — + :Nu 

— inductive effect 

Cl-CH 2-COOH 

0 Θ 
I 

hUC — C—Nu 

Η 

C l - C H 9 - C 0 0 G + H® 

— polarizability 

Br-CH 2CH 2-Cl + OHG HO-CH 2CH 2-Cl + Br 

resonance effect 

H 2 C=CH—+H-CN ^ NC-CH2-CH2—C, 
A H 

H2C—CH=C 

Figure 2 . Concepts used i n discussing the causes of organic 
reactions 

MW 
d ' 

Lorenz-
Lorentz-
Equation 

»cc-
Additivity 

Scheme 

Attenuation 
Model 

7 
OU 

Figure 3. Deriving values for effective p o l a r i z a b i l i t y , ot^, from 
refractive index, n D, molecular weight, MW, and density, d 
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electronegativity values for each atom of a molecule, ref l e c t i n g 
atomic type as well as the influence of the molecular environment. 

The charge values have been used to correlate or calculate a 
variety of physical data including dipole moments (18), ESCA chemical 
sh i f t s (16), Ĥ-NMR chemical s h i f t s (19), and 1 J c _ H c o u p l i n g constants 
(20), thereby relating these physical data to the fundamental values 
of IP and EA, i n concert with a proper consideration of the network 
of bonds i n molecules. 

An extension of the method has been developed for conjugated 
π-systems which arrives at charge dis t r i b u t i o n i n these systems by 
generating the various resonance structures and assigning weights 
to them (21, 22). Again, the significance of the charge values was 
established by reproducing physical data of molecules. 

I t was found that the residual electronegativity values calcu
lated for σ-bonded molecules can be taken as a quantitative measure 
of the inductive effect (23). In a similar manner, the values of π-
electronegativities can be used for quantifying the resonance effect. 

Hyperconjugation. Empty or p a r t i a l l y f i l l e d p-orbitals can be stabi
l i z e d through overlap with adjacent C-H and C-C bonds of appropriate 
symmetry. Following a previous suggestion (24), we have taken the 
number of such bonds as a measure of this s t a b i l i z a t i o n through 
hyperconj ugat ion. 

Putting the Pieces Together 

The previous chapter has b r i e f l y presented methods that quantify the 
various effects used by the organic chemist to rationalize his obser
vations on r e a c t i v i t y , reaction mechanisms, and the course of organic 
reactions. Physical data were chosen to demonstrate the significance 
of the calculated values. 

But are the values calculated by the above methods also useful 
for understanding and prediction of chemical r e a c t i v i t y data? Here, 
the situation i s less well-defined than with physical properties. In 
many cases our knowledge of chemical r e a c t i v i t y i s more of a semi
quantitative nature. Furthermore, i n many reactions the various ef
fects operate simultaneously, and they do so to varying degrees. 

Several s t a t i s t i c a l and pattern recognition techniques were used 
to unravel the relationships between chemical r e a c t i v i t y data and the 
previously described effects which influence them. 

Multilinear Regression Analysis. As an entry to the problem we have 
selected simple gas phase reactions involving proton or hydride ion 
transfer which are influenced by only a few effects and for which 
r e a c t i v i t y data of high accuracy are available. In these situations 
where a larger set of numerial data are available multilinear re
gression analysis (MLRA) was applied. Thus, the simplest mathematical 
form, a linear equation i s chosen to describe the relationship bet
ween re a c t i v i t y data and physicochemical factor. The number of para
meters (factors) simultaneously applied was always kept to a minimum, 
and a particular parameter was only included i n a MLRA study i f a 
definite indication of i t s relevance existed. 

The proton a f f i n i t y (PA) of alkylamines can be described by 
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only a single parameter, the effective p o l a r i z a b i l i t y α ,(13). For 49 
tmsubstituted alkylamines a method was found to calculate proton af-
f i n t i t y from the refractive index, molecular weight, and density (cf. 
Figure 3). For alkylamines carrying heteroatom substitution a 
measure of the inductive effect had to be included. This could be a-
chieved by using residual electronegativity values, χ"^ i n the two 
parameter equation 4 (23). 

P A = V C l °d " C2 Y12 ( 4 ) 

The signs of the coefficients i n this equation are entirely con
sistent with i n t u i t i o n , p o l a r i z a b i l i t y s t a b i l i z i n g , and electronega
t i v i t y destabilizing the protonated form of the amine. Similar equat
ions could be developed for proton a f f i n i t y data of alcohols and 
ethers, as well as of t h i o l s and thioethers (Figure 4b and 4c) (25). 
Furthermore, and χ ^ parameters were also sufficient to describe 
quantitatively gas phase acidit y data of alcohols (Figure 4d) (25). In 
this case, the coefficients for the two parameters had the same sign 
as both effects provide sources of s t a b i l i z a t i o n for the alkoxide 
ion. Figure 5 shows the results obtained by MLRA. 

Simple linear equations could also be developed for the other 
three systems of Figure 4, PA of aldehydes and ketones(4e), and their 
hydride ion a f f i n i t i e s , both of the neutral (4f) and protonated forms 
(4g). However, i n addition to effective p o l a r i z a b i l i t y and electro
negativity, hyperconjugation had also to be used as a parameter, as 
ρ-orbitals carrying a p a r t i a l positive charge are involved i n the 
reactions 4e to 4g (26). 

Multiparameter equations, such as Equation 4, obtained through 
MLRA are the simplest form of p a r a l l e l connection of several models. 
Each model has been parameterized from i t s own source of primary 
data. Combined application can reproduce new types of data and lead 
to new information and knowledge. 

The correlations with data on gas phase reactions have served 
to establish that the parameters calculated by our methods are indeed 
useful for the prediction of chemical r e a c t i v i t y data. Their applica
tion i s , however, not restricted to data obtained i n the gas phase. 
This has been shown through a correlation of pK values ( i n Ĥ O) of 
alcohols with residual electronegativity and poîarizability para
meters, by including a parameter that i s interpreted to r e f l e c t 
s t e r i c hindrance of solvation (27). 

The Reactivity Space. In many reaction types the situation is not as 
well defined as i n the chemical reactions so far investigated. If 
either fewer and less accurate r e a c t i v i t y data are available, or the 
chemical system i s under the influence of many effects, then MLRA i s 
no longer the appropriate analytical method. 

For such situations we have developed a different approach. The 
parameters calculated by our methods are taken as coordinates i n a 
space, the r e a c t i v i t y space. A bond of a molecule i s represented i n 
such a space as a specific point, having characteristic values for 
the parameters taken as coordinates. Figure 6 shows a three-dimens
ional r e a c t i v i t y space spanned by bond polar i t y , bond dissociation 
energy, and the value for the resonance effect as coordinates. 
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R1
X R1

xe 
R2-^N + Η φ > R 2-N-H 

R3/ R 3 / 

R1 R \ e 

p2/ R 

d) R - O - H * R - 0 y + H* 

e) C=0 + > C=0-H 

f) \ = 0 + Η Θ » V o ® 

g) C=0 -H + H > C -O-H 

Figure 4. Gas phase reactions for which linear equations have 
been developed using p o l a r i z a b i l i t y , electronegativity, and 
hyperconiugation parameters. Reaction a) réf. JJ3, 2_3; b)-d) ref. 
25; e)-g) ref. 26. 
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MeOH 

- R-0-H > R-0 Θ + Η Φ 

ο " 5 

ε 
Ία ο 

-
- r 0 H . . 

1370 

ΖΣΖ 

-

365 χ F v r " 0 H Δ Η 
l F ν ι ι ι 

r= c
0 " C1X" c2 ad 

I I 
365 370 375 

ΔΗ ρ (calc.) kcal/mol 

Figure 5. Experimental gas phase acidity data of alcohols 
plotted against values calculated from electronegativity and 
p o l a r i z a b i l i t y parameters. (Reprinted from: Gasteiger, J.; 
Hutchings, M.G. J. Am. Chem. Soc. 1984, 106, 6489). 
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Figure 6. R e a c t i v i t y space having bond p o l a r i t y , Q^, bond d i s 
s o c i a t i o n energy, BDE, and resonance e f f e c t parameter, R, as 
coordinates. 
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In this space various bonds of 2-chlorobutyric acid are indicated. In 
fact, i n this case we have investigated heterolytic bond cleavages. 
Thus, each bond w i l l give r i s e to two points in this space, depending 
on which direction the charges are shifted on heterolysis, i n the 
direction of bond p o l a r i t y , or against i t . For example, points 2 and 
3 of Figure 6 both refer to the carbonyl double bond. In the case of 
point 2, i t s heterolysis against the preformed polarization of that 
bond (Figure 7), and therefore the bond polarity parameter Qa has a 
negative sign. 

Points 2 and 3 are characterized by the same value for the (homo-
l y t i c ) bond dissociation energy. However, resonance s t a b i l i z a t i o n of 
charges can occur only for the heterolysis represented by point 3. 
Therefore i n this case, the resonance parameter R has a high value, 
whereas i t i s zero for the heterolysis represented by point 2. 

Figure 6 shows an additional feature, The points are d i s t i n 
guished according to whether the associated bond i s considered react
ive (breakable; small cubes) or not (non-breakable; small pyramides). 
Any chemist w i l l agree that the most reactive bonds of 2-chlorobutyric 
acid are the 0-H, the C=0, and the C-Cl bonds, where the negative 
charge goes to the more electronegative atom (0 or CI) on heterolysis. 
This heterolytic cleavage of the three bonds i s represented by points 
7, 3, and 4, respectively. The other bonds are considered as much 
less reactive, or non-breakable. I t can be seen that reactive and non-
reactive bonds clearly separate. Thus, this three-dimensional space 
already represents the ease of breaking a bond, a chemical r e a c t i v i t y 
phenomen, quite well. 

With Figure 6 a three-dimensional r e a c t i v i t y space i s shown. Where
as this i s the l i m i t for p i c t o r i a l representation, s t a t i s t i c a l 
methods can deal with spaces of higher dimensionalities. In a study 
aimed at modelling the r e a c t i v i t y of single bonds i n aliphatic 
chemistry a data set of 28 molecules representing that f i e l d was 
chosen. Table II gives this data set. 

The entire set of molecules contained 782 bonds out of which 111 
σ-bonds were selected. The parameters were calculated by our methods to 
build a r e a c t i v i t y space with electronegativity difference, resonance 
effect parameter, bond p o l a r i z a b i l i t y , bond pol a r i t y , σ-charge d i 
stribution, and bond dissociation energy as six coordinates. 

F i r s t , unsupervised-learning pattern recognition methods were 
applied. A principal component analysis showed that the dimension
a l i t y of the space could be reduced without much loss of information. 
With three factors, instead of s i x , 85.9% of the variance of the data 
set could s t i l l be reproduced. The f i r s t factor can be id e n t i f i e d as 
containing the σ-electron di s t r i b u t i o n , the second factor i s highly 
loaded with the bond dissociation energy and bond p o l a r i z a b i l i t y . The 
third factor contains a mixture of effects. Cluster analysis was 
applied as a second unsupervised learning technique. In this case i t 
was applied to a r e a c t i v i t y space of reduced dimensionality using -
for reasons that become clearer below - the resonance effect, bond 
po l a r i t y , and the bond dissociation energies as coordinates. The re
sults are shown as a dendrogram i n Figure 8. 

It i s probably not too surprising that the same bond types 
cluster together, as they are characterized by similar values for the 
respective parameters. However, the interrelationships between d i f 
ferent bond types indicated by the overall structure of the dendro-
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\ 6 + 6-
C=0 

/ 

\ θ θ 

\ φ θ 
C—Ο 

κ 

point 2 

point 3 

Figure 7. The two choices for heterolysis of the carbonyl double 
bond, and their representation as points i n Figure 8. 

Table I I . L i s t of compounds used i n deriving a rea c t i v i t y function 

1) cyclopropane 
2) cyclobutane 
3) cyclopentene 
4) cyclopentadiene 
5) ethyl bromide 
6) ethyl iodide 
7) methylene chloride 
8) a l l y l chloride 
9) neopentyl chloride 
10) 1-methyl-1-cyclopropyl-ethy1 bromide 
11) 1-methyl-1-cyclobuty1-ethyl iodide 
12) 2,2,4,4,-tetramethylcyclobutanol 
13) acetaldehyde 
14) acetone 
15) trimethylacetaldehyde hydrate 
16) choral hydrate 
17) aldol 
18) methyl propionate 
19) ethyl acetoacetate 
20) ct-chloropropionic acid 
2Π 5-hydroxy-nona-3,5,8-triene-2-one 
22) 2-oxocyclopentane carboxylic acid 
23) 5-hydroxy-5-methyl-butylrolactone 
24) 1-dimethylamino-propene 
25) 4-amino-2,4-dimethyl-2-pentanole 
26) succinimide 
27) a-picoline 
28) 6-chloro-6-methoxy-bicyclo [3.1 .oJhex-2-
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Figure 8. Dendrogram of the relationship between the various 
bonds on heterolysis as obtained by a cluster analysis (A= accep
tor* D= donor). 
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gram, and some of the smaller details of the dendrogram give inte r 
esting information. To name just one: the C-C bonds of the three-
and four-membered carbocycles are found to be rather closely related 
to the carbon-halogen bonds (in both cases carbenium ions can be ob
tained, either d i r e c t l y as with the C-Hal bond, or after attack of an 
electrophile (H +, Lewis acid) as both with halocarbons and with cyclo-
propanes and cyclobutanes). 

Next, supervised-learning pattern recognition methods were ap
plied to the data set. The 111 bonds from these 28 molecules were 
c l a s s i f i e d as either breakable (36) or non-breakable (75), and a step
wise discriminant analysis showed that three variables, out of the 
six mentioned above, were pa r t i c u l a r l y s i g n i f i c a n t : resonance effect, 
R, bond po l a r i t y , QQ, and bond dissociation energy, BDE. With these 
three variables 97.3% of the non-breakable bonds, and 86.1% of the 
breakable bonds could be correctly c l a s s i f i e d . This says that chemi
cal r e a c t i v i t y as given by the ease of heterolysis of a bond i s well 
defined i n the space determined by just those three parameters. The 
same conclusion can be drawn from the results of a K-nearest neigh
bor analysis: with k assuming any value between one and ten, 87 to 
92% of the bonds could be correctly c l a s s i f i e d . 

One method that we have found p a r t i c u l a r l y useful for our pur
poses i s l o g i s t i c regression analysis (LoRA). In this method, a 
binary c l a s s i f i c a t i o n i s taken as a probability, P Q (given the value 
0 or 1) and modelled by the two coupled equations 5 and 6. 

Ρ = 1/(1 + e"f) (5) 
f = c + c.x. + c 0 x 0 + ... (6) ο 11 II 

In the linear function f, the x. are the parameters considered 
relevant to the problem. The coefficients c. are determined to maxi
mize the f i t of the calculated probability £ as closely as possible 
to the i n i t i a l c l a s s i f i c a t i o n P Q. 

The method applied to the problem of chemical re a c t i v i t y trans
lates into the following. A data set of molecules i s chosen and bonds 
in these molecules are selected and specified either breakable or 
non-breakable (P 0 = 0/1). Then, the physicochemical parameters deemed 
important for the r e a c t i v i t y of the bonds under investigation are 
calculated and used as variables x. i n Equation 6. LoRA i s applied 
to model the i n i t i a l c l a s s i f i c a t i o n of bonds into breakable or non-
breakable classes. 

In this process, a function f i s obtained that can be used as a 
numerical estimate for the ease of breaking of a bond. We therefore 
c a l l i t a r e a c t i v i t y function. The all-important point i s that 
through LoRA the qualitative information of whether a bond i s break
able or not i s used to construct a function that predicts chemical 
r e a c t i v i t y quantitatively. 

A r e a c t i v i t y function (Equation 7) applicable to single bonds i n 
aliphatic species was obtained with the data set of 111 bonds from 
the 28 molecules mentioned above. 

f = 2.87 + 0.162-R + 32.9-Q - 0.084-BDE (7) 
σ 

In a similar manner, a function quantifying the r e a c t i v i t y of 
bonds i n charged species was developed. These functions are of quite 

 P
ub

lic
at

io
n 

D
at

e:
 A

pr
il 

30
, 1

98
6 

| d
oi

: 1
0.

10
21

/b
k-

19
86

-0
30

6.
ch

02
1

In Artificial Intelligence Applications in Chemistry; Pierce, T., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1986. 



274 ARTIFICIAL INTELLIGENCE APPLICATIONS IN CHEMISTRY 

general v a l i d i t y - The numerical values calculated with them permit 
prediction of which bonds and combinations of bonds w i l l react pre
f e r e n t i a l l y . Inferences on the course of complex organic reactions 
can be drawn from this information. 

As an example: What w i l l be the product of heating 1,2:1,4—di— 
epoxy-p-menthane, J . (Figure 9) with alumina i n toluene? A chemist 
would assume i n i t i a l breaking of an epoxide-ring. But which one of 
the two? Or w i l l both break? Furthermore, for each epoxide ring there 
are two possible choices of C-0 bonds. 

Figure 10 shows the sequence of bond breaking obtained by a p p l i 
cation of the r e a c t i v i t y function for neutral aliphatic molecules and 
the one for charged species. The consecutive bond breakings that are 
explored lead to the conclusion that the pattern of breaking and 
making bonds as indicated i n structure 2 should be the most favored 
one. Thus, i t is predicted that both oxirane-rings are broken, one 
even i n the direction leading to the seemingly less stable carbenium 
ion. Furthermore, even a bond i n the saturated six-membered ring i s 
found to be breakable. The mechanistic pattern of structure g permits 
to make the inference that compound 3 i s t n e most l i k e l y product of 
this reaction. This i s indeed the observed course and product of the 
rearrangement of 1 (28). 

Examples of other cases of prediction of complex organic react
ions have been given elsewhere (3). Functions applicable to the 
r e a c t i v i t y of multiple bonds and of aromatic systems have been de
veloped i n an analogous manner. 

Conclusion. I t has been demonstrated that the methods developed for 
the calculation of physicochemical effects can form the foundation 
for a general quantitative treatment of chemical r e a c t i v i t y . Based on 
the factors calculated with these various methods, re a c t i v i t y funct
ions can be elaborated that are able to assign a numerical r e a c t i v i 
ty to bonds and combinations of bonds i n a molecule. In this manner 
the course and outcome of organic reactions can be predicted. A 
quantitative treatment of chemical r e a c t i v i t y i s also an essential 
component i n synthesis design since i t allows evaluation of the 
f e a s i b i l i t y of various synthetic reactions and pathways. 

The knowledge base of that part of the EROS system that predicts 
chemical r e a c t i v i t y consists of the procedures for calculating the 
physicochemical effects and the way i n which they are connected. 
These methods can be part of a series connection (Figure 3) or of a 
p a r a l l e l connection (Equation 4). In other words, the knowledge base 
consists of the chemical models that form the building blocks and the 
s t a t i s t i c a l models that form the network of connections. 

As the chemical models mentioned here refer to some fundamental 
thermochemical and electronic effects of molecules, their application 
i s not restricted to the prediction of chemical r e a c t i v i t y data. In 
fact, i n the development of the models extensive comparisons were 
made with physical data, and thus such data can also be predicted 
from our models. Furthermore, some of the mechanisms responsible for 
binding substrates to receptors are naturally enough founded on 
quite similar electronic effects to those responsible for chemical 
r e a c t i v i t y . This suggest the use of the models developed here to c a l 
culate parameters for quantitative structure-activity relationships 
(QSAR). 
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1 

Figure 9. Example of a problem f o r r e a c t i o n p r e d i c t i o n 

3 
Figure 1 0 . Network of bond-breaking and -making patterns 
explored by the r e a c t i v i t y f u n c t i o n s l e a d i n g to the c o r r e c t pre
d i c t i o n of product 3 from Κ 
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In this sense, expert systems for the prediction of chemcial reactions, 
for the design of organic syntheses, for the prediction of physical 
data, for structure elucidation , and for QSAR can be founded on the 
knowledge base comprized by the models presented here. 
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An E x p e r t S y s t e m for High P e r f o r m a n c e Liquid 

C h r o m a t o g r a p h y M e t h o d s D e v e l o p m e n t 

René Bach1, Joe Karnicky1, and Seth Abbott2 

1Varian Research Center, Varian Associates, Inc., Palo Alto, CA 94303 
2Varian Instrument Group, Varian Associates, Inc., Walnut Creek, CA 94598 

ECAT (Expert Chromatographic Assistance Team) is an 
expert system being developed at Varian Associates. 
The goal of our project is to create a computer pro
gram that performs, at the human expert level, the 
tasks of designing, analyzing, optimizing, and 
trouble-shooting a high performance liquid chroma
tography (HPLC) separation method. The program is 
successfully reaching conclusions relating to a number 
of probes that test the design and trouble-shooting 
capabilities. This paper describes the development of 
ECAT in terms of the overall strategy of the program, 
the hardware and software used, and the development of 
the knowledge bases. Current results and future plans 
are discussed. 

The goal of our current research i s to apply A r t i f i c i a l I n t e l l i 
gence (AI) techniques to the writing of an expert system for High 
Performance Liquid Chromatography (HPLC) methods development; that 
i s , to produce a computer program capable of developing HPLC 
separation methods i n a manner comparable to that of an expert 
chromatographer. The expert system program i s named ECAT (an 
acronym for Expert Chromatographic Assistance Team). 

Creating a machine chromatographer i s a highly ambitious 
goal. Because i t w i l l involve a very large effort to complete the 
ECAT program as envisioned, we are developing the system as a set 
of (eventually interacting) modules whose functionality can be 
separately specified and implemented. 

Once one has bu i l t or acquired an expert system s h e l l , an 
expert system i s usable and useful at an early stage of develop
ment. Subsequent development consists of increasing and refining 
the knowledge, expanding the functionality and improving the 
efficiency of the system. 

The reader of this paper should be aware that the overall 
design of ECAT (described i n the sections on SYSTEM DESIGN and 
FUTURE WORK) has only been implemented to the extent of the 
running modules that are described under CURRENT STATUS. 

0097-6156/ 86/0306-0278$06.00/0 
© 1986 American Chemical Society 
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Background 

The original design for ECAT was described i n an a r t i c l e by Dessy 
(_1). The development of the system to date has deviated consider
ably from this plan both i n implementation methodology and rate of 
progress. This i s primarily attributable to the fact that the 
s k i l l and experience of our group i n applying AI programming 
techniques has grown with time. 

Project Motivation. Chromatography, i n general, and methods 
development, i n particular, exhibit characteristics which indicate 
that writing an expert system i s worthwhile: while chromatography 
i s used by a large and diverse technical group ( i . e . , biologists, 
engineers), the number of s k i l l e d chromatographers i s i n f i n i t e 
supply. 

HPLC i s characterized by a dynamic, expanding knowledge base, 
which should benefit from a systematic reorganization of knowledge 
i n a common repository (the expert system). Writing an expert 
system for HPLC would make available to users of chromatographic 
techniques an automatic, rel i a b l e and fast application of existing 
chromatographic expertise. It could communicate this expertise i n 
an instructional manner, and provide for the convenient construc
tion and manipulation of data (rule) bases containing structured 
representations of chromatographic knowledge. 

AI research i n the last decade has demonstrated that i t i s 
possible to capture and apply the human expertise related to a 
specialized f i e l d by means of an expert system computer program. 

Limitations of Conventional Programming. It i s clear that truly 
i n t e l l i g e n t and comprehensive methods development i s s u f f i c i e n t l y 
complex to be beyond what a conventional computer program can 
manage. Conventional programming methods are inadequate because 
of the d i f f i c u l t y of writing, and subsequently debugging and 
modifying, a procedural algorithm which could perform the complex 
task of HPLC method development. In addition, conventional pro
gramming methods don't support e f f i c i e n t l y the a b i l i t y to repre
sent and manipulate information which i s non-numeric, judgmental, 
uncertain, and incomplete. Research i n AI over the last two 
decades has yielded programming languages and programming methods 
for writing expert systems which do not suffer from the above 
limitations. We have applied some of these methods, described 
below, to create ECAT. 

Expert System Programming. Many of the concepts and terms which 
w i l l be used i n the description of this work are unique to the 
fiel d s of AI and computer science. The reader should refer to the 
a r t i c l e by Dessy (_2) or to the introductory a r t i c l e of this sympo
sium for a more detailed description of these concepts. 

There i s some disagreement within the AI community as to what 
qualifies a computer program to be called an "expert system". We 
use the term to describe a program which has the following charac
t e r i s t i c s : 1) The program performs some task (e.g., HPLC methods 
design) which requires specialized human expertise. This human 
expertise often takes the form of heuristics (empirical rules of 
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thumb); 2) The "domain knowledge" ( i . e . , the knowledge i n the 
program specific to the task at hand, for example: methods design) 
i s e x p l i c i t l y encoded i n a computer readable form and i s segre
gated from the mechanisms for i t s application (collectively called 
the "inference engine"); 3) The system has the potential for 
explaining i t s reasoning; 4) The amount of knowledge encoded i n 
the system i s non-trivial ( i . e . , for a rule-based system there are 
hundreds or thousands of rules). 

Figure 1 i l l u s t r a t e s the elements and individuals involved i n 
developing and using the ECAT expert system. The domain knowledge 
(including heuristic knowledge) i s e l i c i t e d from the domain expert 
by the knowledge engineer who uses software tools to convert the 
knowledge into computer processable form ( i . e . , facts and rules i n 
knowledge bases). An individual uses the program by communicating 
with the system via the user interface. In response to the user's 
requests, the inference machinery makes logic a l deductions and 
performs tasks by processing the appropriate knowledge base. 
Results are communicated back to the user via the user interface. 

Related Work 

Algorithmic Methods Development. The recent development of sta
tistically-based HPLC solvent optimization computer programs (3-9) 
have achieved useful behavior i n experimental design by optimizing 
separations with respect to specific performance c r i t e r i a . How
ever, AI programming techniques were not applied i n these pro
grams. 

Expert Systems for Chemistry. At this time, there are a very 
large number of expert systems for chemistry i n various stages of 
development. (See, for example, some of the other papers i n this 
symposium.) Some of the more successful systems developed i n the 
past include: The DENDRAL series of programs from Stanford- These 
include DENDRAL (started i n 1965), CONGEN, and META-DENDRAL 
(10-11). These programs elucidate chemical structures from mass-
spectral information. Similar programs have been used to compu
terize CI 3 NMR spectral analysis (12-13). Most recently the 
PROTEAN project aims at computing the three-dimensional structure 
of proteins i n solution using NMR data (14); The CRYSALIS program 
interprets a three-dimensional image of the electron density map 
obtained by X-ray crystallography of proteins (15); SYNCHEM and 
SYNCHEM2 (16-17), LHASA (18), and SECS (19) are examples of compu
terized or computer-assisted organic synthesis. 

System Strategy 

The goal of ECAT i s to provide assistance to the user of a chroma-
tograph i n the development of an HPLC method. To do t h i s , one 
must specify the tasks performed i n developing an analytical 
method. The computer performs these tasks by processing informa
tion. In ECAT we are c a l l i n g the collection of information spe
c i f i c to a task a Module. The modules and information flow which 
w i l l be needed for the completely implemented ECAT are shown i n 
Figure 2. 
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DOMAIN 
EXPERT 

USER 
KNOWLEDGE 
ENGINEER 

USER 
INTERFACE x 

KNOWLEDGE BASE 
CONSTRUCTION 

AIDS 
N Kr 

MRS INFERENCE ENGINE: 
FORWARD CHAINING 
BACKWARD CHAINING 

META LEVEL 

ECAT SHELL 

CMP 
KNOWLEDGE 

BASE 

COLDIAG 
KNOWLEDGE 

BASE 

Figure 1. Elements involved i n development and application of 
the ECAT expert system. 
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SAMPLE AND MATRIX 
INFORMATION 

DECIDE ON 
SAMPLE CLEANUP 

(MODULE 4) 

DIAGNOSE 
HARDWARE 

FAULTS 
(MODULE 6) 

OPTIMIZE THE 
SEPARATION 
(MODULE 5) 

~ ~ r ~ 
OPTIMIZED 

SEPARATION 

Figure 2. ECAT task modules: flow of information i n the method 
design process. 
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The complete ECAT system as envisioned i n Figure 2 w i l l take 
as input the user's specification of the sample to be analyzed 
(analytes, matrix) and w i l l ultimately produce a separation method 
that s a t i s f i e s the user's requirements for resolution and analysis 
time. 

The strategy adopted i s that the system w i l l f i r s t decide 
whether Gas Chromatography (GC) or Liquid Chromatography (LC) i s 
the best separation method. If LC i s the method of choice, and a 
qualified separation i s not found i n the program's l i b r a r y , i t 
w i l l design and optimize a separation, also specifying pre-column 
sample treatment where applicable. The design of this separation 
w i l l ultimately include cycles of designing an i n i t i a l separation, 
performing the experiment, analyzing the results, and redesigning 
u n t i l a satisfactory separation i s achieved. During the optimiza
tion step i t may be necessary to diagnose for column and hardware 
f a i l u r e . 

The chemical information which the program w i l l need w i l l be 
stored i n data bases or input by the user. The details of these 
modules are discussed i n the sections on current results or future 
plans. 

To summarize, a complete methods development program must be 
able to: 1. provide chemical information, 

2. choose between GC and LC, 
3. specify column, mobile phase constituents and 

detector, 
4. decide on sample cleanup, 
5. optimize (or redesign) the separation, 
6. diagnose hardware problems. 

Implementation 

Our program i s being implemented as a knowledge-based system. The 
knowledge about chromatography which i s imbedded i n the program i s 
i n the form of facts and rules. These facts and rules are repre
sented within the computer by statements i n predicate logic. In 
predicate logic a statement i s represented by a l i s t of symbols, 
where the f i r s t symbol (the predicate) represents a relationship 
among the objects which are represented by the other symbols i n 
the l i s t . Complex facts are expressed using what are called 
" l o g i c a l connectives" (e.g., AND, OR, NOT, IF). We distinguish 
statements starting with IF and c a l l them rules. A rule i s also 
referred to as an IF-THEN statement. A rule asserts that the 
statements i n the l e f t hand side imply the statements i n the right 
hand side. An inference engine i s used to interpret those rules 
to generate new facts or to answer questions. 

Figure 3 shows examples of some ECAT facts and rules. A 
rule's components are a name, a type declaration, an English 
language description of the rule, an English language translation 
of the rule, and the actual form that i s processed by the program 
during inferencing. Variables are bound during inferencing. 

Development Environment. Hardware: the hardware currently con
s i s t s of a Symbolics 3670 workstation, a Symbolics 3640 worksta
tion, and a VAX 750, a l l connected by Chaosnet (an Ethernet proto-
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(userl 
(type fact) 
(pform (largest-mw 500 daltons))) 

(user2 
(type fact) 
(pform (analyte-class phenols))) 

(user3 
(type fact) 
(pform (asked (analyte-class $class)))) 

(cmpgenl 
(descr n i l ) 
(type rule) 
(text ( i f sample molecular-weight i s > 100 then there are more 

than three carbons i n the molecule)) 
(pform ( i f (and (largest-mw $mw daltons) 

(> $mw 100)) 
then (more-than-three-carbons)))) 

(cmpgen7 
(type rule) 
(text ( i f the analyte class i s not a protein and not a peptide, 

then use the specified analyte class for further 
inferencing)) 

(pform ( i f (and (analyte-class $class) 
(asked (analyte-class $class)) 
(unknown (analyte-class protein)) 
(unknown (analyte-class peptide))) 

then (consider (analyte-class $class))))) 
(cmpl 

(descr (a default rule for selecting separation mode)) 
(type rule) 
(text ( i f the chemical class of the analyte i s not a protein, 

and the analyte has more than three carbons, and the 
analyte does not belong to a class for which straight 
phase i s recommended, then use a reverse phase sepa
ration mode)) 

(pform ( i f (and (consider (analyte-class $class)) 
(more-than-three-carbons) 
(unknown (consider (analyte-class protein))) 
(unknown (straight-phase-packing $class $x $y))) 

then (separation-mode reverse-phase)))) 

Figure 3. Examples of facts and rules i n ECAT. $... are 
variables. 

 P
ub

lic
at

io
n 

D
at

e:
 A

pr
il 

30
, 1

98
6 

| d
oi

: 1
0.

10
21

/b
k-

19
86

-0
30

6.
ch

02
2

In Artificial Intelligence Applications in Chemistry; Pierce, T., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1986. 



22. BACH ET AL. An Expert System for H PLC Methods Development 285 

c o l ) . Software: the Symbolics machines run Zetalisp, and we are 
using Franzlisp i n Eunice (a UNIX emulator running under VMS) on 
the VAX (see Figure 4). 

To develop the expert system we are using a first-order logic 
programming system called MRS (20). It i s a general inference 
engine providing for forward chaining, backward chaining and 
control of the inferencing by a meta-level reasoning system. 
Reasoning at the meta-level refers to reasoning about reasoning, 
that i s , reasoning about what needs to be done next, or what i s 
the best way to solve the problem at hand. 

Forward chaining i s reasoning from known facts via rules to 
conclusions. For example, i f a user asserted the three facts 
l i s t e d at the top of Figure 3 the program would conclude, by 
forward chaining, that the separation mode should be reverse 
phase. We use forward chaining to process the Column and Mobile 
Phase (CMP) design knowledge base. Backward chaining proves given 
hypotheses by testing whether the " i f " parts of relevant rules are 
known or provable using other rules. For example, i f the program 
was asked the equivalent of "What separation mode should I use?" 
i t could use backward chaining through the rules i n Figure 3 to 
infer that i t should ask the user about molecular weight and 
analyte classes to provide the answer to the question. We use 
backward chaining for the column diagnosis. MRS runs i n Zetalisp, 
Maclisp and Franzlisp. We have made some modifications to the MRS 
inferencing capability and provided a better user interface. 

We selected MRS for the following reasons: The domain exper
tise of the column troubleshooting and of the CMP design i s read
i l y expressed i n IF-THEN rules that MRS i s designed to handle. 
Previous users of MRS had indicated that i t was a versatile tool 
for reasoning with various forms of domain expertise and that the 
meta level reasoning could be used to solve particularly d i f f i c u l t 
problems. MRS doesn't require, although i t runs well on, special
ized hardware such as a Lisp machine supporting high resolution 
graphics. Because the source code i s provided, i t i s easy to 
write extensions to MRS directly i n Lisp (such as the user i n t e r 
face). F i n a l l y , since MRS i s academic software, i t i s inexpen
sive. 

Results 

Development of ECAT Knowledge Bases. The extent of an expert's 
domain knowledge ty p i c a l l y exceeds that which he or she reali z e s , 
or i s capable of immediately articulating. Our experience has 
shown that an expert asked to begin with a "tabula rasa" and 
perform an instantaneous brain dump of domain knowledge w i l l y i e l d 
only a small portion of that knowledge. The technique we are 
using to f a c i l i t a t e transfer of human expertise to the expert 
system program involves an iterative process which incrementally 
improves program functionality. Incorrect or incomplete conclu
sions reached by the program are presented to the human expert who 
i s asked to provide the information necessary for the program to 
yield the expert's recommended solution. This process i s re
peated, expanding the knowledge base and hence the frequency with 
which successful problem solving occurs. 
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This strategy i s i l l u s t r a t e d by our construction of the 
knowledge base of Module 3 of the ECAT program. Module 3 spe
c i f i e s the HPLC analytical column, mobile phase constituents, and 
detector to be used. The design problem given to the program i s 
termed a "sample probe". A sample probe consists of a specifica
tion of a user's sample (input) and the recommendations which the 
program SHOULD compute (output). Sample probes are prepared by 
colleagues outside the program ( i . e . , by chromatographers other 
than the domain expert) by selection from new separations ap
pearing i n refereed chromatographic journals, and from standard, 
qualified HPLC methods. 

F i r s t Rules* The f i r s t probe tested was the trace analysis of 
phenols i n wastewater. At this point, the knowledge base con
tained no rules and thus no answer was given as to column, mobile 
phase or detector specification. The expert stated that the 
separation should be run i n a reverse phase mode on a C18-silica 
column, with a water-acetonitrile mobile phase containing 0.1% 
acetic acid as a competing acid additive (to reduce peak t a i l i n g 
of weakly acidic phenols). At this point, the expert was asked to 
explicate his reasoning as a series of rules which concluded the 
correct design recommendation. Nine rules were specified. 

It should be noted here that i n specifying the rules for the 
f i r s t probe (phenols), i t became clear that rules for choosing the 
column and mobile phase interact s i g n i f i c a n t l y with detector 
rules. 0.1% acetic acid works well as a competing acid additive 
i n terms of chromatography of the phenols. However, carboxylate 
ions are known to quench the fluorescence of phenols. Thus, i f 
one were to use a fluorescence detector for trace phenol detec
tion, an alternative competing acid, such as 0.1% phosphoric acid 
should be substituted. It was decided that mobile phase/detector 
interaction rules would be the f i r s t detector rules to be added to 
the knowledge base. 

More Rules. Figure 5 tracks the number of IF/THEN rules added to 
the knowledge base to specify column and mobile phase consti
tuents. Detector rules other than those relating to mobile phase 
compatibility were not entered at this time. As the knowledge 
base expanded, subsequent probes of similar molecular structure 
(and hence similar chromatographic properties) were solved with 
addition of few or no rules. Solution without requiring incre
menting of the knowledge base i s termed a "direct h i t . " Spikes i n 
the graph of Figure 5 occur for new sample probes having major 
structural differences from those already tested - for example, 
the sample probe "LDH isoenzymes" required special rules regarding 
protein chromatography. 

It should also be noted that new sample probes can generate 
additions to the sample information queries asked of the user at 
the beginning of the "probe session." Thus, protein probes re
quired the addition of queries regarding molecular weight, i s o 
e l e c t r i c point and whether biological a c t i v i t y i s to be preserved 
in the chromatographic step. These questions are triggered only 
i f the user specifies the sample as a peptide or protein i n answer 
to the i n i t i a l sample questions. Also, once the sample i s spe
c i f i e d as a protein, the question as to the pKa or pKb of the 
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CHAOSNET 

TELEPHONE 
LINES 

Figure 4. Hardware and Software for the development of ECAT. 

PHENOLS 
OPIUM ALKALOIDS 
ACID EXTRACT OF URINE 
TETRACYCLINES 
SCH 28191 EXPT'L DRUG 
BETA-CAROTENE 
LDH ISOENZYMES 
HGH TRYPTICDIGEST 
UREA, THIOUREA 
TRICYCLIC ANTIDEPRESSANTS 
AVERMECTINS 
CARDIAC DRUGS 
IBUPROFEN 
CHL0R0-, NITRO-PHENOLS 
TESTOSTERONE STEROIDS 

AVERAGE OF RULES USED TO 
SOLVE A PROBE IS CA.15 

6 7 8 9 10 
PROBE NUMBER 

12 13 14 15 

Figure 5. Development of knowledge base rules to select column 
and mobile phase constituents. * indicates "direct h i t " . 
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sample w i l l not be asked, and the is o e l e c t r i c point i s requested 
instead. Thus the i n i t i a l query session i s " i n t e l l i g e n t " i n the 
sense that the questions asked are specific to the sample probe 
i t s e l f . 

The next step i n the development of this knowledge base w i l l 
be to subject i t to probe input by chromatographers i n the Varian 
HPLC Applications laboratory. For each external probe which i s 
answered with an incorrect or incomplete answer by the ECAT pro
gram, an interrogation of the probe creator by the ECAT domain 
expert w i l l generate additional rules to be conveyed to the know
ledge engineers. Thus the knowledge base w i l l be incremented. 

Automatic Testing. As the knowledge base expands, the need to 
check each new rule for consistency with the existing rule set 
becomes c r i t i c a l . This i s done automatically. A program subjects 
the f i l e of previous sample probes to the expanded knowledge base 
and checks to see i f previous solutions are unaffected. If pre
vious solutions have been affected, one must proceed to debug the 
new additions to the knowledge base. This often requires re
writing some rules. Sometimes i t provokes rethinking and reformu
lating part of the knowledge base. 

Current Performance - Modules 

The performance of ECAT i s primarily determined by the correctness 
and extent of the knowledge and data bases, that i s , the modules 
shown i n Figure 2. 

Module 3, Column and Mobile Phase Design (CMP). This i s the core 
module for ECAT. It can currently specify i ) analytical column 
and mobile phase constituents for reverse phase chromatography of 
common classes of organic molecules; i i ) reverse phase, ion 
exchange phase and hydrophobic interaction chromatography of 
proteins and peptides; i i i ) a limited set of specialty classes 
of molecules best treated by straight phase chromatography (e.g., 
mono- and disaccharides). The rules for selection of the HPLC 
detector are under development within Module 3. Some of the rules 
for detector mobile phase compatibility are already encoded. A 
set of rules for detector selection i s ready but not yet encoded. 

The program infers design parameters using data base informa
tion from Module 1 and user-supplied information, along with an 
extensive knowledge base of chromatography heuristics. Module 3 
currently contains ca. 160 rules, generated to cover 15 sample 
probes which represent some commonly separated classes of com
pounds (see Table I ) . Figure 6 shows an example of the applica
tion of ECAT to a design problem. The items i n Figure 6 are the 
user inputs and system recommendations i n the form i n which they 
are actually processed and generated by the program. 

Figure 7 shows part of the user consultation that e l i c i t e d 
the inputs l i s t e d i n Figure 6. The current user interface pro
vides on-line help as well as a menu of numbered val i d re
sponses. The user may either type i n the number or the l i s t e d 
item. In answer to the user typing "?", the system rephrases the 
question, redisplays acceptable values, and specifies what other 
characters are recognized. If this i s not enough information, the 
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Table I. Sample probes used to develop knowledge base 
of Module 3 for specification of analytical 
HPLC column, and mobile phase constituents. 

Probe 1. phenoIs 

Probe 2. opium alkaloids 

Probe 3. acid extract of urine 
Probe 4. tetracyclines 

Probe 5. SCH 28191 
(experimental drug) 

Probe 6. beta-carotene 
Probe 7. LDH isoenzymes 
Probe 8. HGH tryptic digest 
Probe 9. urea, thiourea 
Probe 10. t r i c y c l i c a n t i 

depressants 
Probe 11. avermectins 

Probe 12. cardiac drugs 
Probe 13. ibuprofen 
Probe 14. chlorophenols 

nitrophenols 
Probe 15. testosterone steroids 

moderately polar, weakly acidic 
molecules 
polar, basic nitrogen hetero 
cycles, typical of many drugs 
carboxylic acids 
molecules with significant metal-
complexation character 
same as opium alkaloids (Probe 2) 
non-polar, neutral molecules 
proteins 
peptide fragments 
small, polar molecules 
same as opium alkaloids (Probe 2) 

moderately polar, neutral mole
cules 
same as opium alkaloids (Probe 2) 
moderately polar carboxylic acid 
non-fluorescent phenols 
(see Probe 1) 
complex mixture of compounds 
sharing same hydrocarbon backbone 
and diff e r i n g i n functional group  P
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USER ENTRIES 

(analyte-class phenols) 
(specific-analyte phenol) 
(pka-of phenol 11) 
(largest-mw 400 daltons) 
(detector-type fluorescence) 
(smallest-analyte-amount 10 ng) 
(class-of sample-matrix river-water) 

RECOMMENDATIONS 

Guard column 
(additional-column guard-column) 
(packing-of guard-column p e l l i c u l a r ) 
(packing-of guard-column silica-based) 
(diameter-of p e l l i c u l a r 25 micron) 

Analytical column 
(separation-mode reverse-phase) 
( r e s t r i c t (diameter-of particle $value micron) 

(<= $value 5)) 
(packing-of $column silica-based) 
(prefer (bonded-phase $column CI8) 

(bonded-phase $column C8) 0.2) 

Mobile phase 
(prefer (liquid-of solventb acetonitrile) 

(liquid-of solventb methanol) 0.4) 
(liquid-of solventb methanol) 
(liquid-of solventb aceton i t r i l e ) 
(liquid-of solventa water) 
(additive-of solventb competing-acid phosphoric-acid) 
(additive-of solventa competing-acid phosphoric-acid) 
( r e s t r i c t (ph-of $3 $4) (>= $4 2) (<= $4 7.5)) 
(concentration-of phosphoric-acid solventb 0.1%) 
(concentration-of phosphoric-acid solventa 0.1%) 

gure 6. Example of user inputs and system recommendations for 
CMP probe. $... are variables. 
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You are running the Column and Mobile Phase Selection module. 

You should type ? or H any time you require help. 
Some prompts require an additional <CR> to terminate input acqui
s i t i o n . 
Be careful not to type ahead. 

Valid values: 
1. amino-acid-hydrolysate 17. oligonucleotides 
2. amino-acid- 18. oligosaccharides 

physiological-fluids 19. oligosaccharides 
3. citric-acid-cycle-acids 20. peptide 
4. diastereomers 21. phenols 
5. carboxylic-acid 22. phospholipids 
6. disaccharides 23. porphyrins 
7. glucosamines 24. porphyrins 
8. glycolipids 25. prostaglandins 
9. glycosphingolipids 26. protein 
10. hyd r oxyv i t ami ns d 2+d 3 27. sphingolipids 
11. l i p i d s 28. stereoisomers 
12. methylated-nucleosides 29. steroids 
13. monosaccharides 30. sugar-alcohols 
14. monosaccharides! 31. tricarboxylic-acids 
15. nue le ο s i de s+nuc le ο t i de s 32. other 
16. nucleotides 

Analyte class: phenols <CR> 
Analyte class: <CR> 

Valid value i s a number. 
phenol pKas: ? <CR> 
Enter the pKa values for phenol. 

Valid value i s a number, 
phenol pKas: 11 <CR> 

Valid value i s a number (unit: daltons). 
Largest molecular weight: H <CR> 
You are asked to enter the molecular weight of the largest mol
ecule you are interested i n analyzing. Typical values are ranging 
from the low hundreds to a few hundred thousand (in the case of 
proteins). 

Any of the following i s a va l i d response: <number> unknown 
Largest molecular weight: 400 <CR> 

Are you using a fluorescence detector ? [y]: <CR> 

Valid value i s a number (unit: Nanograms) 
Smallest analyte amount: 10 <CR> 

Figure 7. Excerpts from a user/expert-system consultation. 
Underlined items are user input. <CR> indicates user typed a 
carriage return. 
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user can type "h" for help. The help text i s not yet completely 
written, but i s readily extensible. "How" and "why" queries are 
not yet recognized. 

Module 6, Column Diagnosis (COLDTAG). This module uses chroma
tographic parameters such as efficiency, asymmetry, retention 
time, s e l e c t i v i t y and operating pressure, to detect failures of 
the column or other chromatographic hardware. Table I I l i s t s the 
types of column f a i l u r e which the module can currently handle. 
Note that the module w i l l also correctly diagnose some problems 
which are NOT column malfunctions but which might be interpreted 
as such by a user. 

Table I I . Types of Column Failure Diagnosed and Treated by 
Module 6 

Column Failures plugged column bed or f r i t s 
dissolution of column bed at high pH 
physical compression of column bed 
hydrolytic cleavage of bonded phase 
chemical alteration of cn bonded phase 
reaction of Nĥ> bonded phase with C=0 
deactivation of Si adsorbtion sites by 

trace Ĥ O 
loss of packing material from column 
irreversible adsorbtion of sample matrix 

components 
Non-column Failures too large an increase i n injection volume 

inadvertent change to strongly eluting 
injection solvent 

inadvertent overloading of column 

Module 1, Determination of Chemical and Structural Information on 
the Sample. The task of Module 1 i s to provide non-chromato-
graphic data for analytes prior to specification of the chromato
graphic method. Data bases have been developed for pK values of 
organic molecules, i s o e l e c t r i c points of proteins, and fluores
cence spectral properties of organic molecules. 

Other Modules. Modules 2, 4 and 5 are currently i n a design 
stage. 

Future Plans 

Module (Knowledge Base) Development. Future development of the 
ECAT system w i l l involve, i n chronological order: 

1) Incrementing Module 3 (CMP) according to sample probe 
testing by chromatographers not directly associated with the 
project and adding detector selection rules. 

2) Development of the knowledge base for Module 5 (optimiza
tion of mobile phase composition and program). The column and 
mobile phase constituents having been specified by Module 3, the 
knowledge base of Module 5 w i l l be used along with inputs of 
required analysis time, and desired degree of resolution to guide 
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optimization of the mobile phase composition and program ( i f 
gradient elution i s required). This module w i l l require a great 
deal of effort as one must write knowledge base rules to determine 
which parameters (pH, ionic strength, ion-pair reagent concentra
tion, organic modifier concentration, etc.) to optimize by either 
simplex or f a c t o r i a l design techniques. One must also develop 
algorithms to analyze the quality of chromatographic separations 
with respect to user input requirements. 

3) Integration of Module 6 (diagnosis of hardware problems) 
into Module 5. It i s sometimes necessary to detect and trouble-
shoot hardware and column failures during the optimization step. 
When abnormal changes i n separation parameters occur during an 
optimization, this detection can halt the series of optimization 
experiments and notify the user of the system f a i l u r e , preventing 
a useless optimization of a "broken" HPLC system. An example of 
this coupling of troubleshooting to optimization would be a s i t u a 
tion i n which one i s optimizing a reverse phase separation of 
opium alkaloids, with respect to the parameters pH and % acetoni
t r i l e i n the mobile phase. Suppose one has run a series of exper
iments varying the pH between 2 and 3 and the concentration of 
acetonitrile between 40% and 50%. Assume the efficiency has 
remained between 6000-7000 plates and asymmetry between 1.2-1.3. 
On the next experiment, with pH 3 and 55% ace t o n i t r i l e , the reten
tion time decreases as expected, but the peak efficiency drops to 
500 plates, and asymmetry increases to 9.0. Simultaneously, a 
slight pressure increase occurs. The column troubleshooting 
module would flag the abnormal change i n chromatographic param
eters occuring for a very slight change i n mobile phase charac
ter. It would then go back and repeat a previous experiment such 
as pH 3 and 50% ac e t o n i t r i l e . If the previous efficiency cannot 
be reproduced, i t i s certain a malfunction has occurred. The 
module could then halt the optimization, troubleshoot the fau l t 
(collapse of column bed with formation of a void at head of c o l 
umn), and recommend corrective action to the user. 

4) Development of Module 4 (knowledge base for sorbent 
cartridge-based sample cleanup prior to the analytical chroma
tography step). The column and mobile phase constituents spe
c i f i e d by Module 3 w i l l be fed into Module 4 i n order to determine 
the procedure for sample cleanup, isolation and elution steps 
prior to the analytical chromatography step. In developing 
Module 4, we w i l l use the recently developed techniques based on 
sorbent cleanup and iso l a t i o n of sample analytes rather than the 
cl a s s i c a l l i q u i d - l i q u i d extraction techniques. This decision was 
based on the a b i l i t y to automate the sorbent technique by using 
short chromatographic sorbent cartridges and on technical advan
tages discussed i n d e t a i l elsewhere (21). 

5) Expansion of Module 3 to include rules for selection of 
detectors and detector parameters. The rules w i l l handle optical 
absorbance and fluorescence (including pre- and post-column d e r i -
vatization) and electrochemical detection. 

6) Expansion of the data bases i n Module 1 to include spec
troscopic and electrochemical data to be used by the detector 
selection rules of Module 3. (This would include UV absorbance 
spectral properties of organic molecules, fluorescence quenching 
and activating properties of solvent environments, and electro-
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chemical a c t i v i t y of organic molecules.) Additional data which 
w i l l eventually be needed i n ECAT includes s o l u b i l i t y characteris
t i c s , boiling points, and melting points of organic molecules. 

7) Development of Module 2: Knowledge base for screening out 
samples which are best done by GC, and development of a library of 
standard, qualified HPLC and GC methods. The system w i l l decide 
whether the analytical demands of the separation are best served 
by gas chromatography or by l i q u i d chromatography. Information 
available from Module 1 i s needed (boiling and melting point data, 
molecular weight), along with information on analyte levels, 
matrix properties, sample complexity and resolution require
ments. As the ECAT program evolves, one might eventually consider 
adding decision capability regarding other important separation 
techniques, such as gel electrophoresis, to the knowledge base of 
step 2. It w i l l be quite useful here to include a " l i b r a r y " of 
standard methods used i n GC and LC. The experts must specify 
those known analytes that are best separated by GC. For example, 
trace analysis of v o l a t i l e pesticides at sub-picogram levels i s 
best performed by GC, and the user should have access to the 
recommended GC method before considering an LC development. On 
the other hand, analysis of re l a t i v e l y non-volatile ionic drugs i s 
best done by HPLC, and here the user should be provided with a 
standard, qualified HPLC method i f such a method exists. Thus, 
Module 2 w i l l include both a knowledge base guiding the decision 
as to GC versus LC and w i l l provide a library of standard, qual
i f i e d chromatographic methods. 

Knowledge Representation 

We are currently investigating the expansion of the ECAT capa
b i l i t y to represent and process knowledge by including a represen
tation scheme based on heirarchically structured descriptions of 
object properties (so-called "frame-based"). It i s sometimes 
awkward to express subtle or indirect knowledge i n the simple form 
of forward chaining reasoning we are currently using. A special
ized planning software architecture such as SPEX (22) might be 
required to handle the f u l l fledged design module. 

We are looking into ways of expressing uncertainty. For 
example, uncertainty occurs i n ECAT when there are alternate sus
pected causes of a separation malfunction or alternate choices of 
bonded phase for some sample classes. In ECAT, representation of 
uncertain information within causal reasoning i s currently handled 
by predicates such as "prefer" or "consider". There i s a long
standing discussion of reasoning about uncertain, inexact or 
unreliable information (23). Certainty factors (24), s t a t i s t i c s , 
fuzzy sets (25) and e x p l i c i t reasoning are methods that can be 
applied to solve this problem. MYCIN-type certainty factor han
dling can be revised to f i t entirely into the realm of s t a t i s t i c s 
(26). Gordon and Short l i f f e have proposed a computable method for 
using the Dempster-Shafer theory of evidence (27). Cohen and 
Grinberg (28) have argued that i t i s best to reason e x p l i c i t l y 
about uncertainty i n ways similar to human thought processing. 
However, the l a t t e r method requires extensive computing which we 
f e e l i s hardly j u s t i f i a b l e i n our case. We w i l l thus investigate 
further application of simple s t a t i s t i c s and Gordon and 
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Shortliffe's proposal. In addition, we w i l l experiment with a 
simplified, domain restricted form of e x p l i c i t reasoning about 
uncertainty. 

User Interface 

This, of course, i s a very important part of the program. We are 
developing i t on an as-needed basis i n response to feedback from 
users. In particular, we s t i l l have not implemented a complete 
explanation f a c i l i t y . The user interface currently provides 
online help and a menu based selection of valid responses whenever 
applicable. 

Conclusion 

We have presented the development of an expert system i n HPLC. 
The overall project goals are f a i r l y ambitious and w i l l require 
continuous work for many years to come. However, the CMP design 
module (the key module of the project) and the COLDIAG module are 
beyond a prototype stage of development. Since those two modules 
cover the two modes of reasoning we consider using, we w i l l be 
able to complete the entire ECAT program using the approach de
scribed i n this paper. 
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An Expert System for Optimizing 
Ultracentrifugation Runs 

Philip R. Martz, Matt Heffron, and Owen Mitch Griffith 

Beckman Instruments, Inc., Fullerton, CA 92634 

The SpinPro Ultracentrifugation Expert System i s a 
computer program that designs optimal u l t r a c e n t r i 
fugation procedures to satis f y the investigator's 
research requirements. SpinPro runs on the IBM PC/XT. 
Ultracentrifugation is a common method in the separa
tion of biological materials. Its capabilities, 
however, are too often under-utilized. SpinPro 
addresses this problem by employing Artificial 
Intelligence (AI) techniques to design e f f i c i e n t and 
accurate ultracentrifugation procedures. To use 
SpinPro, the investigator describes the centrifugation 
problem in a question and answer dialogue. SpinPro 
then offers detailed advice on optimal and alternative 
procedures for performing the run. This advice 
results i n cleaner and faster separations and improves 
the efficiency of the ultracentrifugation laboratory. 

Ultracentrifugation i s a common and powerful method in the separ
ation of biological materials. Despite i t s widespread use, however, 
few investigators f u l l y exploit i t s c a p a b i l i t i e s . As a result, run 
times are unnecessarily long and separations are i n d i s t i n c t . In the 
long run, the efficiency and performance of the laboratory suffer. 

The fundamental cause of this situation i s the increasing 
complexity of the ultracentrifugation environment; the investigator 
must select the run parameters from a growing l i s t of rotors, 
gradient materials, and li t e r a t u r e references. Knowing which rotor 
to use and at what run speed and run time i s a d i f f i c u l t matter. 
Furthermore, the selection of one parameter complexly li m i t s the 
available choices for the remaining parameters. 

Reliance on procedures reported i n the litera t u r e has com
pounded the problem. Often these procedures, perhaps i n i t i a t e d by 
investigators with a limited set of rotors, are i n e f f i c i e n t by 
today's standards: the rotor i s inappropriate, the run speed i s too 
slow, or the run time i s too long. A new investigator applying this 
procedure does not take f u l l advantage of the potential of u l t r a 
centrifugation. 

0097-6156/ 86/ 0306-0297S06.00/ 0 
© 1986 American Chemical Society 
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One solution to the problem i s to provide the investigator with 
technical advice. Good advice should y i e l d several immediate 
benefits: 1) Reliance on inappropriate or outdated techniques can 
be eliminated. 2) Better use can be made of the available equip
ment; shorter run times and improved separations w i l l result. 
3) The advice can be specific to the research requirements of the 
investigator. 4) The time usually wasted i n performing standardi
zation runs, designing an ultracentrifuge procedure, or researching 
ultracentrifugation techniques can be minimized. In general, good 
advice w i l l improve the procedures, and thereby, improve the 
efficiency of most laboratories. 

Designing e f f i c i e n t ultracentrifugation procedures and pro
viding good advice, however, i s a complex task; the knowledge and 
experience of an ultracentrifugation expert are often required. In 
this paper we describe a computer program, the SpinPro U l t r a c e n t r i 
fugation Expert System, that designs ultracentrifugation procedures 
in response to the requirements of the investigator. SpinPro runs 
on the IBM PC/XT. The program i s based on techniques from the f i e l d 
of A r t i f i c i a l Intelligence (AI) and expert systems: the powerful 
capabilities of the Lisp programming language; an inferencing 
procedure capable of drawing conclusions from a complex knowledge 
base; and a knowledge base derived from the expertise of u l t r a 
centrifugation experts. Indeed, SpinPro's use can be compared to 
the advice any person might seek from an expert. The investigator 
and SpinPro enter into a question and answer dialogue i n which the 
investigator describes the research goals and sample character
i s t i c s . At the conclusion of the dialogue, SpinPro produces the 
following reports: 

1. The Design Inputs Report i s a summary of the SpinPro-
investigator dialogue. 

2. The Optimal Plan Report describes an optimal ultracentrifugation 
procedure designed to solve the problem described i n the 
dialogue. It uses the most appropriate rotor from the 
entire line of Beckman rotors. 

3. The Lab Plan Report i s similar to the Optimal Plan, but i t 
describes a procedure based exclusively on the ultracentrifuges 
and rotors available i n the investigator's laboratory. 

4. The Plan Comparisons Report compares the Optimal Plan and Lab 
Plan, identifying significant differences and trade-offs between 
the two plans. 

The reports constitute a complete set of recommendations for the 
ultracentrifugation problem posed to SpinPro. Thus, SpinPro 
performs the advisory role of an ultracentrifugation expert: 
interviewing the investigator for the problem description, offering 
expert advice on the most appropriate centrifugation procedure, and 
f i n a l l y , comparing alternative procedures. 

Major Functions 

SpinPro has four major functions: CONSULTATION, INFORMATION, 
CALCULATION, and CONFIGURATION. The CONSULTATION function performs 
the role of expert advisor. It i s the main topic of this paper. 
The INFORMATION function provides a database of ultracentrifugation 
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techniques, centrifuges, rotors, and literature references. The 
CALCULATION function performs a variety of routine calculations 
including rotor speed reductions, k factors, and pelleting time. 
The CONFIGURATION function records the ultracentrifuges and rotors 
in the investigator's laboratory. This information i s used by the 
CONSULTATION function when designing a run using the equipment from 
the laboratory. 

User Interface 

A l l user inputs are made by pointing at text on the computer screen 
with a "mouse" controlled cursor. The mouse i s a hand-held pointing 
device, which when moved by the investigator over a f l a t surface, 
controls the movement of a cursor or pointer on the computer screen. 
To run the CONSULTATION function, the user points at the text 
"CONSULTATION" on the screen and cl i c k s the mouse button. When 
using SpinPro, the keyboard i s not required. In our observations, 
novice users of the program have been able to design u l t r a c e n t r i 
fugation procedures within minutes of using the program. 

The CONSULTATION Function 

The primary goal of the CONSULTATION function i s to provide the best 
advice possible on precisely how to set up and run an u l t r a c e n t r i 
fugation procedure that i s s p e c i f i c a l l y designed for the i n v e s t i 
gator's research. SpinPro addresses v i r t u a l l y a l l problems i n the 
ultracentrifugation of biological samples excluding whole c e l l s . To 
this end, SpinPro i s "knowledgeable" about d i f f e r e n t i a l , rate-zonal, 
and isopycnic methods. It addresses the separation of proteins, 
glycoproteins, proteoglycans, lipoproteins, subcellular fractions, 
nucleic acids, and viruses. SpinPro's rotor knowledge includes 
swinging bucket, fixed angle, v e r t i c a l tube, zonal, and continuous 
flow rotors. 

Operation 

The CONSULTATION function i s run by using the mouse to select the 
text "CONSULTATION" from the computer screen. The f i r s t question of 
the dialogue, "Please enter the class of your sample of interest", 
appears on the screen. The pop-up menu l i s t s the sample types to 
chose from. The investigator then uses the mouse to select the 
appropriate response from the pop-up menu. This question and answer 
procedure continues u n t i l SpinPro has enough information, t y p i c a l l y 
10 to 15 questions, from which to infer a l l of the relevant param
eters. The dialogue i s directed by SpinPro i n response to answers 
to previous questions. Thus, i f the sample i s a protein, SpinPro 
requests the sedimentation coefficient; i f the sample i s a nucleic 
acid, SpinPro requests the type of nucleic acid. At the conclusion 
of the dialogue, the reports are written to the disk. Using the 
pop-up menu, the reports can be read or saved. 

The dialogue includes capabilities to increase i t s f l e x i b i l i t y . 
F i r s t , the investigator can change an answer to a previous question 
without disrupting the course of the dialogue. This capability i s 
useful when describing a problem that d i f f e r s only s l i g h t l y from a 
previously described problem. Second, the investigator can ask why 
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the current question i s being asked. The "Why?" function informs 
the user what SpinPro i s attempting to infer ( i . e . , the line of 
reasoning) at any particular step, and i t describes the affect that 
different answers w i l l have on the line of reasoning. Third, when 
the answer to a question i s not known, the investigator can answer 
the question with "unknown". Depending on the question, SpinPro 
responds either by asking a related question or by assuming a 
reasonable answer and designing the procedures based on this 
assumption. Any assumptions that have been made are noted in the 
reports. F i n a l l y , for the experienced users of SpinPro, there i s 
the option to request that, during the dialogue, a short form of the 
question be used. 

Optimization C r i t e r i a 

Two of the dialogue questions are of unique importance and are 
particularly representative of SpinPro's capabilities. The f i r s t i s 
a question of research requirements. Every ultracentrifugation pro
cedure should reflect the investigator's concern for purity of the 
separation or short run time, goals that often run counter to each 
other. Rarely does any procedure state this trade-off e x p l i c i t l y . 
The optimization c r i t e r i a question, "Select one of the following 
optimizations:", not only id e n t i f i e s the trade-offs involved when 
designing a procedure, but allows the investigator to control them. 
The investigator can select the c r i t e r i o n which s a t i s f i e s the 
specialized requirements of the research. The c r i t e r i a are: 1) 
purity, 2) minimize run time, 3) minimize cumulative run time, 4) 
minimize number of runs, 5) continuous flow rotor procedures, and 6) 
procedures for processing many samples of small volume. 

Based on the optimization c r i t e r i o n , SpinPro can select the 
most appropriate rotor. For example, suppose the investigator has a 
r e l a t i v e l y large sample volume, a l l of which needs to be processed 
as soon as possible. The "minimize cumulative run time" c r i t e r i o n 
would be the appropriate choice. SpinPro would then i n i t i a t e the 
following rotor selection procedure: SpinPro determines the to t a l 
sample volume based on inputs of the sample volume, the current 
concentration of the sample, and a correction for any pre-run 
dilutions of the sample. Next, consideration i s made for whether 
tubes or bottles w i l l be used. The program then evaluates rotors 
for the number of tube positions and the amount of sample per tube. 
At this point, SpinPro w i l l have estimated for each rotor the number 
of runs required to process the sample. SpinPro then estimates the 
run time for each rotor to perform a single run. Based on these 
estimates, SpinPro selects the rotor that w i l l give the shortest 
t o t a l run time when the run time i s summed over the t o t a l number of 
runs. Similarly, the investigator can select any of the 
optimization c r i t e r i a and i n i t i a t e a variety of precise rotor 
selection procedures. 

Lab Rotors 

The second question of unique importance concerns the investigator's 
selection of a rotor for the Lab Plan. Whereas, i n the Optimal 
Plan, SpinPro selects the rotor; in the Lab Plan, the investigator 
selects the rotor. The investigator, however, i s not required to 
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select the rotor blindly from those available in the lab. SpinPro 
assists i n the selection by assigning each of the rotors i n the lab 
to a category based on how well the rotor s a t i s f i e s the requirements 
of the problem. The categories are as follows: 

1. Optimal rotors - the rotors that are both best suited to per
form the run and to achieve the stated optimization c r i t e r i o n . 

2. Alternate rotors - other rotors that are not optimal but can 
perform the run. 

3. Not qualifying rotors - rotors that are not recommended for the 
problem usually because they are too large or too small for the 
sample volume, or because they do not generate s u f f i c i e n t l y 
high centrifugal forces. 

4. Not compatible rotors - rotors that are not c l a s s i f i e d , as part 
of the rotor safety program, for running i n the ultracentrifuge 
chosen from the lab. 

The investigator can select any rotor from categories 1 and 2 above. 
This allows the investigator to experiment with the rotors i n the 
lab and to design procedures as variations on the theme established 
i n the Optimal Plan. Ultimately, the rotor selected in the Optimal 
Plan by SpinPro and i n the Lab Plan by the investigator are the 
major source of difference in the run parameters, purity, and 
overall effectiveness of the two plans. 

The Design Inputs Report 

As noted e a r l i e r , SpinPro writes four reports regarding the recom
mended procedures. The Design Inputs Report summarizes the ques
tions posed by SpinPro and the answers provided by the investigator. 
A Design Inputs Report i s shown in figure 1. The pop-up menu on the 
right allows the user to switch between reports, print the reports, 
or perform other functions. The report summarizes the problem that 
i s addressed by the Optimal Plan (Figure 2) and the Plan Comparisons 
Report (Figure 3). 

A summary of the report follows: The problem i s to separate 
proteins. Furthermore, SpinPro should pay particular attention to 
the purity of the separation. The sample i s not negatively affected 
by sucrose, has a sedimentation coefficient of 16 Svedbergs, and i s 
i n l i q u i d form of 3 mL and a concentration of 1% w/w. The protein 
of interest should be placed 45% from the top of the gradient at the 
end of the run. Of the gradient concentrations 10-40% and 5-20%, 
the 10-40% i s preferred by the investigator. There are no solvents 
i n the sample that are harmful to the tubes. F i n a l l y , from the lab, 
SpinPro should use the L2-75B ultracentrifuge and the SW 41 Ti 
rotor, which does not require a speed derating due to i t s age. 

The Optimal Plan Report 

The Optimal Plan i s SpinPro's recommendation of how best to perform 
the run. The Optimal Plan of figure 2 i s underlined and annotated 
below: 
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SpinPro Ultracentrifugation Expert System 
Design Inputs 

Experiment: SpinPro Consultation 11-Sept-1985 9:30:00 

Particle class: Protein 
Separation vs Concentration: Separation 
Optimization criterion: Purity 
Assoc/Dissoc in sucrose: No 
Sedimentation coefficient: 16.0 
10-40% or 5-20% gradient?: 10-40 
Sample form: liquid/semi-solid 
Total sample volume (mL): 3.0 
Sample concentration % w/w: 1.0 
Selected final location: 45.0 
Solvents: No 

Selected lab centrifuge: L2-75B 
Selected lab rotor: SW 41 Ti 
Rotor derated?: No 

Figure 1. The Design Inputs Report for the problem described to 
SpinPro. The Optimal Plan and the Lab Plan are based on this 
problem. The pop-up menu on the right allows switching to the 
other reports or performing other functions. 

Page Forward 
Page Backward 
Optimal Plan 
Lab Plan 
Comparisons 
Design Inputs 
Change Answer 
Save Reports 
SpinPro Top 
Exit to DOS 
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SpinPro Ultracentrifugation Expert System 
Optimal Plan 

Experiment: SpinPro Consultation 11-Sept-1985 9:30:00 
This is a complete plan for a protein sample separation 

Optimization criterion: Purity 

Method: Density gradient, Rate-zonal 
Gradient: 10-40% continuous sucrose 
Rotor/run conditions: SW 55 Ti rotor at 55000 rpm 

for approximately 6 hours 
Potential tube materials: Polyallomer, Ultra-Clear 

Centrifuge: L8-80M set at 4 degrees C 
Omega-squared t: 7.132x10Λ11 
Acceleration/deceleration: fast/fast 

Prior to the run prepare sample as follows: 
No special sample preparation is required. 

Load 0.3 mL of the Protein sample in full tubes at 
the top position of the gradient. 

At the end of the run the 16 S particles will be 
approximately 45% from the top of the gradient. 

To process the entire sample volume requires approximately 
2 centrifuge run(s) with an estimated total run time of 
12 hours, 5 minutes. 

Figure 2. The Optimal Plan Report for the problem described i n 
the Design Inputs Report of figure 1. The plan gives the recom
mended procedure for doing the run. 

SpinPro Ultracentrifugation Expert System 
Plan Comparisons 

Experiment: SpinPro Consultation 11-Sept-1985 9:30:00 

Run summaries: 
Optimal: SW 55 Ti at 55000 rpm for 6 hours per run 
in 2 run(s). Requiring a total of approximately 
12 hours, 5 minutes 

Lab: SW 41 Ti at 41000 rpm for 15 hours, 
45 minutes per run in 2 run(s). Requiring a total of 
approximately 31 hours, 30 minutes 

Comparisons: 
The Optimal Plan requires 38% of the Lab Plan run 

time for a single run. It requires 38% of the Lab 
Plan run time when processing the entire sample. 

Figure 3. The Plan Comparisons Report compares the Optimal and 
Lab Plans. The comparison shows that, because the Lab Plan uses 
the SW 41 Ti rotor, the run times are dramatically different. 

Page Forward 
Page Backward 
Optimal Plan 
Lab Plan 
Comparisons 
Design Inputs 
Change Answer 
Save Reports 
SpinPro Top 
Exit to DOS 

Page Forward 
Page Backward 
Optimal Plan 
Lab Plan 
Comparisons 
Design Inputs 
Change Answer 
Save Reports 
SpinPro Top 
Exit to DOS 
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This i s a complete plan for a protein sample separation. A l l of the 
relevant parameters have been inferred in a "complete plan". 
" P a r t i a l plans" indicate that one or more parameters could not be 
determined. 

Optimization c r i t e r i o n : Purity. The report restates the optimiza
tion c r i t e r i o n chosen by the investigator. 

Method: Density gradient, Rate-zonal. The rate-zonal method i s one 
of s i x addressed by SpinPro. The other methods are d i f f e r e n t i a l , 
d i f f e r e n t i a l - f l o t a t i o n , discontinuous, isopycnic, and 2-step 
isopycnic. These methods d i f f e r dramatically in their set up, 
principles of operation, and expected results. The rate-zonal 
method i s described here b r i e f l y so that the recommendations to 
follow can be appreciated. Prior to the run in a rate-zonal method, 
a gradient material i s introduced to the rotor tubes i n steps of 
increasing density from the top to the bottom of the tube. The 
sample to be separated i s layered, as a thin band, on the top of the 
gradient. As the run begins, each component in the sample moves 
toward the bottom of the tube. Some components sediment faster than 
others. This fact i s the basis for the separation. If the run 
parameters are appropriate, the components w i l l form separate bands 
within the gradient. At the conclusion of the run, the band 
representing the component of interest can be removed from the tube. 

Gradient: 10 - 40% continuous sucrose. SpinPro usually selects the 
gradient concentration and the gradient material. Here, SpinPro 
narrowed the choices to the 5-20% or 10-40% gradient, noting i n the 
dialogue that a trade-off between purity and run time exists between 
the 5-20% and the 10-40% gradient, but either w i l l work. The inves
tigator selected the 10-40% gradient. The investigator could, i f 
desired, f i n i s h the plan based on the 10-40% gradient, and then 
using the change answer function, try the 5-20% gradient to find out 
how the recommendations d i f f e r . Sucrose i s the gradient material of 
choice here. SpinPro considers a wide variety of gradient materials 
including cesium chloride, Nycodenz, Metrizamide, glycerol, and 
potassium tartrate. 

Rotor/run conditions: SW 55 Ti rotor at 55000 rpm for approximately 
6 hours. These recommendations form the core of any procedure. 
SpinPro usually considers more factors in the rotor selection 
process than does the expert. In determining the run speed, SpinPro 
considers every possible reason to reduce the run speed. If there 
are none, the rotor i s run at f u l l speed. When there are reasons 
(e.g., when using salt gradients, bottles, d i f f e r e n t i a l pelleting, 
or discontinuous runs), the run speed may have to be reduced dramat
i c a l l y , from 80,000 rpm to 40,000 rpm, for example. There are many 
cases of rotors being run too slow for the application or too fast 
for safety. Accurate determination of the run time i s a complex 
problem based on the gradient characteristics, calculations, i n t e r 
polations from numerical tables, and experience. SpinPro employs 
a l l of these methods in order to infer run times for many special 
cases. 
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Potential tube materials: Polyallomer, Ultra-Clear. SpinPro checks 
that a l l gradient materials, samples, and solvents are compatible 
with the tube materials. The affects of acids, bases, o i l s , organic 
solvents, and salts on the tube materials are considered. 

Centrifuge: L8-80M set at 4 degrees C. The Optimal Plan recommends 
the L8-80M ultracentrifuge. SpinPro selects a temperature that w i l l 
protect the integrity of the sample. 

Omega-squared t: 7.132xl0Ell. SpinPro calculates this measure of 
the to t a l force applied to the gradient and sample during the run. 

Acceleration/deceleration: fast/fast. Many investigators overlook 
the affect that improper acceleration or deceleration can have on 
disrupting the separation, especially when re-orientation of the 
gradient occurs i n fixed angle or v e r t i c a l tube rotors. SpinPro 
addresses many special cases. 

Prior to the run prepare sample as follows: No special sample 
preparation i s required. Proper sample preparation i s important to 
prevent , ,overloading , , the gradient. A sample that i s too concen
trated w i l l d r i f t through the gradient before the run i s started. 
If the sample i s i n a proper form, as i t i s here, then no 
preparation w i l l be recommended. 

Load 0.3 mL of the Protein sample i n f u l l tubes at the top position 
of the gradient. Applying the correct amount of sample i s important 
to prevent "overloading" the gradient. The rotor tubes can be run 
f u l l or half f u l l , or bottles can be used i n place of tubes. 
SpinPro determines which option i s most appropriate. A number of 
parameters are affected by this option, including the run time. 
Knowing where to load the sample i s important. Samples can be 
loaded at the top, middle, or bottom of gradients, or mixed 
homogeneously with them. 

At the end of the run the 16 S particles w i l l be approximately 45% 
from the top of the gradient. In the rate-zonal method, common 
practice i s to have the component of interest at the 50% position i n 
the gradient when the run i s over. SpinPro allows the f i n a l 
position to be specified, giving the investigator the opportunity to 
adjust the procedure so that components not of interest are widely 
separated from the component of interest. 

To process the entire sample volume requires approximately 2 
centrifuge run(s) with an estimated t o t a l run time of 12 
hours, 5 minutes. SpinPro determines how many runs are required to 
process the entire sample volume. The t o t a l run time i s estimated. 
When large sample volumes are involved, and thus many runs are 
required, the investigator can change the optimization c r i t e r i o n to 
"minimize number of runs" or "minimize cumulative run time" i n order 
to more e f f i c i e n t l y process the sample. Since two runs are required 
here, the investigator may want to select a larger rotor for use in 
the Lab Plan. 
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The Lab Plan Report 

The Lab Plan provides information similar to that of the Optimal 
Plan except that there i s the additional constraint of using only 
the ultracentrifuges and rotors available i n the laboratory. This 
requirement can result i n dramatic differences between the Optimal 
Plan and the Lab Plan. The run times can d i f f e r by hours, for 
example, or the purity of the separation can be s i g n i f i c a n t l y 
affected. A completely different gradient can be recommended as a 
function of the rotor selected from the lab. If there are no rotors 
i n the lab capable of doing the separation, SpinPro reports that the 
run cannot be done with the available rotors. 

The Plan Comparisons Report 

The Plan Comparisons report summarizes the differences between the 
plans i n terms of run time and number of runs required to process 
the sample (figure 3). In the figure the Optimal Plan uses the 
SW 55 Ti rotor and the Lab Plan uses the SW 41 Ti rotor. The 
different run times resulting from these rotors are compared on a 
percentage basis. A similar comparison i s made for the to t a l run 
time required to process the entire sample. Each of the rotors 
requires two runs to process the entire sample. The comparison of 
the t o t a l run times can help in identifying the slower, but larger 
capacity, rotors that are more e f f i c i e n t for handling large sample 
volumes. If warranted, SpinPro makes qualitative comparisons 
between the two plans. 

Expert System Details 

SpinPro i s a typical backward chaining, rule-based expert system. 
Rule-based systems are systems in which the expert's knowledge i s 
encoded primarily i n the form of if-then rules, i . e . , i f a set of 
conditions are found to be true then draw a conclusion or perform an 
action. "Backward chaining" refers to the procedure for finding a 
solution to a problem. In a backward chaining system, the inference 
engine works backwards from a hypothesized solution to find facts 
that support the hypothesis. Alternative hypotheses are t r i e d u n t i l 
one i s found that i s supported by the facts. 

SpinPro's backward chaining inference engine i s called "MP". 
"MP" has been developed by Beckman to support the development of 
expert systems. It has several features that have been designed 
s p e c i f i c a l l y i n response to the requirements of the SpinPro project. 
Two of these requirements are that SpinPro run on an IBM PC/XT and 
that the program-user interface be advanced and easy to use. The 
report generator and the pop-up menu/mouse interaction provide the 
advanced user interface. To be able to run the program on the IBM 
PC/XT and s t i l l address the ultracentrifugation problem required the 
development of fact tables, "why responses", rule functions, rule 
groups, and "constraints". Development of these features has 
greatly improved the a b i l i t y of "MP" to make complex inferences. 

Some of these features are demonstrated in the rule example of 
figure 4. The rule, one of approximately 800 rules i n SpinPro, i s 
assigned to the rule group 2-STEP.ISOPYCNIC.DNA.RULES. Only those 
rules, i d e n t i f i e d by the rule group name and pertinent to the solu-
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tion of a particular problem, are applied to that problem. This 
breakdown of rules into rule groups i s one of the methods used to 
f a c i l i t a t e putting a complex expert system on a microcomputer with 
r e l a t i v e l y limited memory and processing power. 

The overall effect of the rule i n figure 4 i s to select, from a 
set of rotors, those rotors that are best for minimizing the run 
time when using the 2-step isopycnic method to separate DNA. The 
i n i t i a l set of rotors i s called USERS.MATCHED.ROTORS. The f i n a l set 
of rotors i s called the MINIMIZE.RUN.TIME.ROTORS. The body of the 
rule applies tests to the i n i t i a l set of rotors and concludes that 
the rotors passing the tests are the MINIMIZE.RUN.TIME.ROTORS. In 
greater d e t a i l , Clause 1 of the rule tests the value of the para
meter VERTICAL.TUBE.ROTORS. The value of this parameter t e l l s 
SpinPro whether v e r t i c a l tube rotors should be considered for the 
run. Often this can be deduced by SpinPro, but when i t can't, the 
question "Do you want to consider using v e r t i c a l tube rotors i n this 
run" i s posed to the user. The parameter VERTICAL.TUBE.ROTORS has a 
set of properties that define i t s characteristics including the 
prompt used to request the information, the "expect" property used 
to specify the acceptable responses to the prompt, and the "Why 
Response" property used in response to the investigator's input of 
"Why?". 

If the value of VERTICAL.TUBE.ROTORS i s found to be true (or 
"yes") then clause 2 of the rule i s evaluated. The references to 
"fact" i n clause 2 cause the system to refer to a table that 
contains the facts for particular rotors. References to the facts 
ROTOR.DESIGN, TUBE.VOLUME, and K.FACTOR are applications of pa r t i c 
ular constraints to the rotors. For example, two constraints are 
that the rotor must have a tube volume greater than 1 mL and a k 
factor less than 50. Clause 3 further pares the set of rotors on 
the basis of k factor by taking only the best rotor and any rotor 
with a k factor within 50% of the k factor of the best rotor. 

The Other Functions 

SpinPro includes two other functions that enhance i t s role as an 
expert advisor. This i s i n recognition that an expert provides more 
than expert advice. An ultracentrifugation expert serves i n many 
roles: a teacher of centrifugation principles, a describer of 
standard procedures, and a source of lite r a t u r e references. 

The INFORMATION function contains an extensive database of 
ultracentrifugation information organized i n a hierarchical fashion 
(Figure 5). The primary purpose of the INFORMATION function i s to 
provide an on-line reference to separation techniques, gradient 
materials, rotors, tubes, and centrifuges. For example, INFORMATION 
can be used to get information on the Type 70.1 Ti rotor, the 
compatibility of polyallomer tubes with certain chemicals, a 
description of rate-zonal separations, and references to isopycnic 
methods. The subjects i n the information hierarchy can be expanded 
to give a more detailed breakdown of the subject. For example, 
expanding the "Fixed Angle" subject yields a detailed breakdown of 
the fixed angle rotors. The investigator could now select one of 
the rotor names on the screen and get information about that rotor. 
The INFORMATION function includes the subject "SpinPro", which i s a 
complete on-line manual of the SpinPro system. 
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RULE 2667: (Rulegroup: 2-STEP.ISOPYCNIC.DNA.RULES) 

If: 1) VERTICAL.TUBE.ROTORS, and 

2) Find all instances of THAT.ROTOR among the value of U S E R S . M A T C H E D . R O T O R S 
such that: 

1) the ROTOR.DESIGN fact of THAT.ROTOR = one of: SWINGING.BUCKET, 
FIXED.ANGLE, or VERTICAL.TUBE, and 

2) the T U B E . V O L U M E fact of THAT.ROTOR > 1, and 

3) the K.FACTOR fact of THAT.ROTOR < = 50 
(saving those in COLLECTED.ROTORS) , and 

3) Find all instances of THAT.ROTOR among C O L L E C T E D . R O T O R S for 
which: the K.FACTOR fact of THAT.ROTOR is within 50% of the smallest value 
so computed (saving those in C O L L E C T E D . ROTORS) 

Then: 1) Conclude that MINIMIZE.RUN.TIME.ROTORS is each of C O L L E C T E D . R O T O R S . 

Figure 4. A rule that selects rotors to minimize the run time 
i n a plasmid DNA separation. The rule examines a set of rotors 
called USERS.MATCHED.ROTORS, selecting those rotors that s a t i s f y 
c r i t e r i a based on the rotor design, tube volume, and k factor. 

SpinPro = Fixed Angle^ 

= Sample Materials 
and Particles 

Vertical Tube 

Information 
Top Level = 

= = Separation Methods 

= Tubes and Bottles 

= Swinging Bucket 

= Continuous Flow 

= Ultracentrifuge Rotors = Zonal 

Ultracentrifuges = Table of Rotors 
by Use 

Glossary = Accessories 

===== Rotor Maintenance 

===== Rotor Warranties 

Point at an Information Item and cl ick any mouse button for Opt ions Menu . 

Figure 5 . The information hierarchy of SpinPro showing the ca
tegories of information available. The positions i n the hi e r 
archy can be expanded to give a more detailed breakdown of each 
subject. 
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The CALCULATION function provides a variety of routine calcula
tions performed in most ultracentrifugation laboratories. Included 
are di l u t i o n calculations for sucrose, a pelleting time calculation, 
and a calculation for determining rotor speed reductions for sa l t 
gradients. As with the INFORMATION function, the CALCULATION func
tion i s a support tool in the effort to e f f i c i e n t l y design and carry 
out a separation. 

Development of SpinPro 

There i s much concern about the length of time required to develop 
expert systems, particularly since so many have achieved various 
stages of prototype, but few have been completed. Our experience 
with SpinPro has led to many insights, more than can be f u l l y d i s 
cussed here. Nevertheless, a few major points are worth mentioning. 

It i s not particularly clear to us why SpinPro has succeeded in 
achieving product status and other expert systems have not, although 
we suspect that an early decision to produce a product rather than 
to do AI research has been important. The problem domain of u l t r a 
centrifugation appears to have been a good choice. The domain has 
proven to be f a i r l y well bounded, even though the 800 rules required 
has exceeded early estimates by a factor of four. When considering 
the various stages of prototyping, debugging, and refinement, over 
25,000 rules have been written, and tossed out. Perseverance, 
sustained by having a concrete goal of "completeness" rather than a 
more indeterminate goal of "demonstrating f e a s i b i l i t y " or 
"prototyping", was crucial to the success of the project. 

In some ways expert systems programming i s l i t t l e different 
from more " t r a d i t i o n a l " programming. For example, similar to most 
software programs, about 50% of the code i n SpinPro i s for the user 
interface; debugging has been very time consuming; and miscommuni-
cation was the source of a great deal of additional e f f o r t . Since 
these problems are a part of traditional programming as well, tech
niques designed to assist traditional programmers, such as organ
ization principles, specification, and effective communication also 
apply to expert systems. 

In other ways expert systems programming i s much different. 
Traditional principles of specification and organization are tested, 
in part, because the program undergoes evolutionary and sometimes 
revolutionary revisions as an understanding of the problem domain 
grows. Despite early detailed specification, the tendency of the 
specification and the project to evolve toward i t s f i n a l d e f i n i t i o n 
seems to be unavoidable. 

From i t s inception to completion, the development of SpinPro 
has taken about s i x person years. The development team has included 
a manager, two knowledge engineers, one primary expert, four experts 
for review, and two people responsible for the content of the 
INFORMATION function. During this time, we have completed the 
following major a c t i v i t i e s : 

1. specification and prototyping 
2. knowledge acquisition from the expert 
3. knowledge coding into rules and debugging of rules 
4. design and implementation of the "MP" inference engine 
5. design and implementation of the user interface 
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6. collecting and writing the contents of the INFORMATION function 
7. converting from Interlisp-D on the Xerox 1108 AI workstation to 

Gold H i l l Common Lisp (GCLISP) on the IBM PC/XT 
Of these a c t i v i t i e s , task 3 (knowledge coding) and task 4 (inference 
engine) were the major efforts. Knowledge coding and debugging 
required at least five times as much effort as task 2, the knowledge 
acquisition from the expert. Task 7, converting from the develop
ment environment to the product proved to be one of the major 
hurdles. 

There are two notable AI enhancements that are not a part of 
SpinPro. F i r s t , the "MP" inference engine does not include uncer
tainty reasoning. The problem domain has only a limited use for i t , 
and where i t i s required, uncertainty i s handled within the capabil
i t i e s of "MP". Second, "MP" does not include an a b i l i t y to explain 
i t s reasoning beyond the "Why?" function discussed e a r l i e r . An 
explanation capability was not implemented because the usual form of 
presenting a trace of the rules that have fi r e d i s inadequate and 
potentially confusing to the user. Why? Because rules t y p i c a l l y 
encode "shallow" knowledge (the expert's experience and rules of 
thumb) and in a rule trace, are inadequate for communicating the 
re a l , "deep" knowledge, reasons for making a decision. 

SpinPro and the Expert 

How does SpinPro compare to the expert i n solving ultracentrifuga
tion problems? For most problems, SpinPro designs procedures as 
good as the expert, i f not better. The inherent capabilities of 
computers are responsible for this achievement; they are consistent, 
they don't forget, and they are precise. For example, SpinPro 
contains a vast amount of knowledge that i s not a part of the 
expert's active memory. Many of the rules are an integration of the 
expert's knowledge and procedures reported i n the l i t e r a t u r e . Other 
rules are derived from li t e r a t u r e references only. This vast amount 
of knowledge i s immediately available to SpinPro, but not to the 
expert. For the new problems, the ones never described to SpinPro, 
the expert i s far superior. The expert has intelligence, 
c r e a t i v i t y , common sense, and an understanding of the principles of 
ultracentrifugation. These are human tools that the expert can 
bring to bear on new problems. At this stage in AI applications, 
and despite the goal of AI to recreate these human a b i l i t i e s , 
SpinPro, l i k e other expert systems, i s lacking. 

From the SpinPro project emerged a strong SpinPro-expert 
relationship. Early i n the project the expert was doubtful about 
the prospects of capturing years of education and experience i n a 
software program. Also the expert f e l t threatened by the expecta
tion that his role would be subsumed by a computer. These problems 
soon disappeared as the challenge of creating SpinPro became more 
important. As the project neared completion, the expert took 
personal responsibility for the accuracy of SpinPro and pride i n i t s 
level of achievement. SpinPro's future development remains closely 
tied to the expert. 

SpinPro required that the expert c r i t i c a l l y review the science 
of ultracentrifugation and his knowledge of i t . For example, 
SpinPro sometimes designed a procedure using a rotor that was not 
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expected or recommended an exceptionally short run time that was 
shorter than thought possible. These procedures required careful 
review. Sometimes they were accepted as v a l i d improvements to 
existing procedures. Isopycnic runs are one example, where SpinPro 
found that procedures t y p i c a l l y requiring 12-16 hours, could be run 
for 7-9 hours with the same results. Thus, SpinPro i s i n d i r e c t l y 
responsible for advancing the expert's understanding of u l t r a c e n t r i 
fugation and for improving ultracentrifugation techniques. SpinPro 
promoted a degree of rigorousness that had never before been applied 
to ultracentrifugation. 

Updates to SpinPro continue as new rotors and new techniques 
are developed or as inadequacies are found. New expert systems 
techniques, such as the a b i l i t y to incorporate the principles of a 
problem domain, rather than just the experience of the expert, 
should give SpinPro the a b i l i t y to design procedures for novel 
problems and to explain i t s reasoning. The updates insure that 
SpinPro w i l l be a repository of knowledge about the current state of 
ultracentrifugation; SpinPro's expertise should continue to improve. 
Furthermore, the expert remains gainfully employed as a f i n a l 
arbitrator on the inclusion or exclusion of any new knowledge. 

Conclusion 

The SpinPro Ultracentrifugation Expert System provides an integrated 
package of expert advice, information, and calculation functions. 
Its purpose i s to allow investigators to f u l l y exploit the c a p a b i l i 
ties of ultracentrifugation, thereby improving the efficiency of the 
ultracentrifugation laboratory. It uses AI techniques to provide 
the a b i l i t y to advise on the best selection of run parameters that 
sat i s f y the investigator's requirements. Our experience with 
SpinPro has shown that i t eff e c t i v e l y performs the role of an expert 
advisor: designing e f f i c i e n t ultracentrifugation procedures that 
can reduce run times and improve the quality of separations. 
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Elucidation of S t r u c t u r a l F r a g m e n t s 

b y C o m p u t e r - A s s i s t e d Interpretat ion of IR S p e c t r a 

Hugh B. Woodruff, Sterling A. Tomellini1, and Graham M. Smith 

Merck Sharp & Dohme Research Laboratories, Rahway, NJ 07065 

Since its introduction to the scientific community in 
late 1980, PAIRS (Program for the Analysis of IR Spec
tra) has been used successfully by a large number of 
researchers. Recent improvements to PAIRS have made 
this package incorporate most of the aspects of expert 
systems. The improvement highlighted in this paper is 
the capability for scientists to inquire of the system 
why a particular interpretation result was achieved. 
This capability enhances the ability for scientists to 
learn from the knowledge base of interpretation rules 
present in PAIRS. It also simplifies the process by 
which the PAIRS knowledge base can be refined through 
incorporation of improved rules from expert 
spectroscopists. 

One of the more interesting areas available for development i n analy
t i c a l spectroscopy i s the generation of algorithms and software capa
ble of interpreting IR spectra. A number of papers have been 
published recently on computerized interpretation of vibrational 
spectra (1-22). Thegeneration of such software requires the a n a l y t i 
cal chemist to understand the interpretation process and be able to 
translate the process into an algorithm which the computer can per
form. While generating the actual computer code i s by no means 
t r i v i a l , the chemical knowledge required to solve the interpretation 
problem makes a chemist and not a computer scie n t i s t the l i k e l y pro
ducer of such a program. 

Among the most widely distributed of these interpretation pro
grams i s a package called PAIRS Program for the Analysis of IR Spec
tra) which has been distributed by the authors and the Quantum 
Chemistry Program Exchange to nearly 100 researchers. The program i s 
available i n both IBM mainframe and DEC VAX versions. A simplified 
schematic of the information flow i n PAIRS i s shown i n Figure 1. 
Spectral information i n the form of a di g i t i z e d IR spectrum including 
peak location, width and intensity values may be entered either 
1 Current address: University of New Hampshire, Durham, NH 03824 

0097-6156/ 86/0306-0312$06.00/0 
© 1986 American Chemical Society 
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interactively or from a f i l e created previously, perhaps with the 
aid of a d i g i t i z i n g tablet. 

Since the introduction of PAIRS i n 1980, considerable effort 
has been expended on improving various aspects of the package to 
make i t more valuable to researchers. A version of PAIRS capable of 
running on a Nicolet FTIR instrument-based minicomputer was deve
loped to eliminate the time required to d i g i t i z e spectra and to 
make the program available to the practicing analytical spectrosco-
pi s t (12). Recently, versions of PAIRS capable of running on other 
FTIR systems have been reported (23, 24). 

Generating Interpretation Rules 

The generation of interpretation rules for PAIRS has proven to be a 
time-consuming and often inexact process. Many man-years were re
quired to generate the f i r s t set of rules. Trulson and Munk (18) 
emphasized the massive effort required for rule development i n 
their report on their promising work on a table-driven approach to 
infrared spectral interpretation. Rule development and subsequent 
testing are generally much more time consuming than either acquiring 
test spectra or programming the interpretation routines. 

One of the strengths of PAIRS i s the a c c e s s i b i l i t y of the i n 
terpretation rules i n a form that i s easily understandable and modi
fiable by the s c i e n t i s t . To accomplish this feat, a special 
English-like language known as CONCISE (Computer Oriented Notation 
Concerning Infrared Spectral Evaluation) was developed (19). 
CONCISE has a very small (62 words) and well-defined vocabulary 
which can be mastered by non-computer-oriented s c i e n t i s t s . It con
s i s t s of if-then-else logic and begin-done blocking. Once the voca
bulary and structure of CONCISE are known, the s c i e n t i s t i s free to 
create or change interpretation rules at w i l l . 

In order to expand the usefulness of the PAIRS package, an 
automated rule generation program has been developed. An advantage 
of automated rule generation i s that a more mathematical and uniform 
method of determining expectation values can be developed and used. 
(An expectation value i s a measure of the likelihood of occurrence 
for the presence of a particular functionality i n the unknown com
pound.) A detailed description of the algorithms used for the auto
mated rule generator i s presented elsewhere (21). 

The simplicity and c l a r i t y of CONCISE has been retained i n the 
automated rule generator which creates CONCISE interpretation rules 
for PAIRS based on a representative set of IR spectra. The rule 
generator uses peak position, intensity, and width tables produced 
by an automated peak picking routine. This method reduces the de
pendency on published frequency correlation data and enhances the 
usefulness of data already available. A l l work was done using the 
version of PAIRS running on a Nicolet 1180 minicomputer and programs 
generated have been optimized for this system. 

CONCISE rules are generated based on the frequency of occur
rence of peaks i n compounds i n a spectral database. Good interpre
tation rules have been created using a r e l a t i v e l y small number of 
spectra i n the database. To recreate interpretation rules for the 
168 classes of compounds currently addressed by PAIRS i n an auto
mated manner would require a substantial effort and a better 

 P
ub

lic
at

io
n 

D
at

e:
 A

pr
il 

30
, 1

98
6 

| d
oi

: 1
0.

10
21

/b
k-

19
86

-0
30

6.
ch

02
4

In Artificial Intelligence Applications in Chemistry; Pierce, T., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1986. 



314 ARTIFICIAL INTELLIGENCE APPLICATIONS IN CHEMISTRY 

spectral database than currently exists. However, the automated 
rule generator provides the tools to accomplish this task and to 
expand the current rule base. 

Tracing Interpretation Rules 

The discussion thus far has centered on input to the interpreter; 
however, the sc i e n t i s t i s perhans most interested i n the informa
tion returned by PAIRS. The results were previously limited to a 
numerical indication of the likelihood that any particular function
a l i t y or sub-functionality i s present. While the rules upon which 
interpretations are based are available i n an English-like language, 
CONCISE, i t i s normally a rather d i f f i c u l t process to determine why 
a given functionality was assigned a given value. The usefulness of 
PAIRS would be greatly enhanced, especially as a research t o o l , i f 
the program were able to provide the user with a clear trace of the 
decision making process. Very recent efforts have resulted i n an 
improved version of PAIRS which not only allows the user to question 
which functionalities may be present, but also why they are thought 
to be present (22). 

Major changes and additions were required to make PAIRS capable 
of providing an easily understandable trace of the interpretation. 
The interpreter required the vast majority of these modifications, 
including the addition of a number of new subroutines. F u l l use was 
made of the decompiling features already present i n the interpreter. 
Therefore, input-output and decision controlling routines make up 
the majority of the subroutines added. The decision controlling 
routines actually serve a dual purpose. Not only do these routines 
decide which data should be printed during a trace, but they also 
keep track of the progress of the interpreter as i t makes i t s way 
through the interpretation rules. Thus, the controlling routines 
know at any given moment which rules have already been interpreted 
and which rules remain to be interpreted. The rule compiler was 
modified to create a f i l e containing the "header" names, which are 
the names of the major fu n c t i o n a l i t i e s . The CONCISE interpretation 
rules were not changed during this process. Now the user i s pres-
sented with three options for interpreting a spectrum: 1.) trace 
the decision making process for a l l f u n c t i o n a l i t i e s ; 2.) trace the 
decision making process for any of the major functionalities (e.g., 
acid) and i t s corresponding sub-functionalities (e.g., acid-satur
ated); or 3.) interpret the spectrum without any tracing as was 
done previous to the modifications described i n this paper. In any 
case, an entire interpretation takes place and, therefore, a numeri
cal indication i s available for the likelihood that each functiona
l i t y and sub-functionality i s present. 

It i s important to remember that the if-then-else logic of the 
CONCISE language forces the interpreter to follow one unique path 
through the interpretation rules, a path dictated by the spectral 
data entered. A very important consequence of being able to follow 
only one path i s that a trace of the decision making process can 
give information about what decisions were made but cannot give any 
information about what decisions might have been made had the spec
t r a l data been different. Knowing what decisions were made can, 
however, give a good indication why a given functionality might have 
been reported at a lower value than expected. 
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The best way to demonstrate the added capability and increased 
v e r s a t i l i t y of the interpreter due to the tracing feature i s through 
example. Since the interpreter generally bases a good deal of impor
tance on peak intensity information, i t i s obvious that mixtures and 
larger molecular weight compounds w i l l often cause the interpreter to 
return less than desirable results. In cases where the intensities 
are lower than would normally be expected for a given functionality, 
a valuable feature of the modified program i s the a b i l i t y to see 
quickly what decisions have been made and why these decisions were 
made. 

The a n t i b i o t i c actinospectacin, the structure of which i s given 
below, was chosen to demonstrate the improved interpreter. A spec
trum of actinospectacin (published i n Volume 10 of the B u l l e t i n of 
the International Center of Information on Antibiotics) was d i g i t i z e d 
with the resulting peak data being presented i n Table I. The peak 
data i n Table I were entered into the interpreter without any empiri
cal formula information. The sample state entered reflected the fact 
that the spectrum was taken as a KBr p e l l e t . Table I I contains the 
twenty functionalities and sub-functionalities which the interpreter 
predicted as most l i k e l y to be present i n the sample. (The *1*, *2*, 
and *3* terminology indicated one, two, or three occurrences, respec
t i v e l y , of alpha branching or unsaturation i n the alcohol.) Pre
viously this information was essentially a l l that the user could 
learn using PAIRS without investing the time necessary to decipher 
the CONCISE rules for the functionalities i n question. The improved 
version of PAIRS, however, allows the user to ask, for example, "Why 
was "sulfone" indicated with such a high expectation value?". If the 
data i n Table 1 are reinterpreted with the decision process for the 
functionality "sulfone" being traced, the user learns that the high 
likelihood for a "sulfone" i s due to the presence of the 1330 and 
1351 cm""l bands of intensity 7 and 6, respectively, the 1121 and 1145 
cm"-'- bands of intensity 7 and 9, respectively, and the presence of 
more than two bands between 1090 and 1170 cm - 1 with intensities 
greater than 7. The actual decision trace i s given i n Figure 2. 
Should the user suspect that these bands are due to another function
a l i t y , knowledge of how these bands were used i n predicting the pre
sence of a "sulfone" may allow the interpreter's prediction of a high 
likelihood of "sulfone" to be less highly regarded. 

Conversely, one may suspect the presence of a particular func
t i o n a l i t y but discover that the interpreter predicts that functiona
l i t y with a low expectation value. Knowing the structure of actino
spectacin, one would expect that "ketone" should be predicted to be 
present with a f a i r l y high expectation value. The interpreter, how
ever, returns a value of 0.01 for the likelihood of presence of the 
"ketone". In this case, the user learns that the low expectation 
value for "ketone" was based on the absence of any peak with i n t e n s i 
ty 7 or greater i n the carbonyl region between 1571 and 1800 cm~̂ -. 
In the case of an unknown compound, knowledge of the interpreter's 
decisions can give the user added insights and ideas, especially 
when the spectrum i s not ideal for a given functionality. The user, 
i n any case, now has the a b i l i t y to work with the program to see i f 
minor variations i n the data would result i n different and possibly 
more reasonable interpretations. 

 P
ub

lic
at

io
n 

D
at

e:
 A

pr
il 

30
, 1

98
6 

| d
oi

: 1
0.

10
21

/b
k-

19
86

-0
30

6.
ch

02
4

In Artificial Intelligence Applications in Chemistry; Pierce, T., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1986. 



ARTIFICIAL INTELLIGENCE APPLICATIONS IN CHEMISTRY 

Digitized 
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Figure 1. Information flow i n PAIRS. 

Structure of the a n t i b i o t i c a c t i n o s p e c t a c i n . 
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24. WOODRUFF ET AL. Computer-Assisted Interpretation of IR Spectra 317 

Table I. Digitized Actinospectacin Spectrum 

Relative 
Peak No. Position (cm Intensity Width 

1 3527 9 Broad 
2 3401 10 Broad 
3 3311 10 Broad 
4 3254 10 Broad 
5 3071 9 Broad 
6 2962 9 Average 
7 2796 6 Broad 
8 2486 2 Average 
9 1645 5 Average 
10 1629 5 Average 
11 1581 4 Average 
12 1566 4 Average 
13 1460 8 Average 
14 1429 6 Average 
15 1392 8 Average 
16 1351 6 Sharp 
17 1330 7 Average 
18 1271 2 Average 
19 1235 3 Average 
20 1215 3 Average 
21 1190 6 Average 
22 1176 7 Sharp 
23 1145 9 Average 
24 1121 7 Average 
25 1107 8 Average 
26 1087 9 Average 
27 1078 10 Average 
28 1046 9 Average 
29 1037 9 Average 
30 1024 9 Sharp 
31 999 7 Sharp 
32 981 3 Average 
33 952 4 Sharp 
34 936 4 Sharp 
35 923 7 Average 
36 891 2 Average 
37 875 3 Average 
38 859 5 Average 
39 814 3 Average 
40 728 5 Average 
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Table I I . PAIRS I n t e r p r e t a t i o n Resu l t s f o r A c t i n o s p e c t a c i n 

FUNCTIONALITY EXPECTATION VALUE 
1 ALCOHOL 0.99 
2 SULFONE 0.85 
3 OLEFIN-(NON-AROMÏ 0.75 
4 0LEFIN-CHR=CH2 0.75 
5 ALCOHOL-PHENOL 0.75 
6 ALC0H0L-PRIM(*1*) 0.75 
7 ALCOHOL-PRIMARY 0.75 
8 ALCOHOL-SEC-(*1*) 0.75 
9 ALCOHOL-SEC-(*2*) 0.75 
10 ALCOHOL-SEC-RING 0.75 
11 ALCOHOL-SECONDARY 0.75 
12 ALCOHOL-TERT-(*1*) 0.75 
13 ALCOHOL-TERT-(*2*) 0.75 
14 ALCOHOL-TERT-(*3*) 0.75 
15 ALCOHOL-TERT-RING 0.75 
16 ALCOHOL-TERTIARY 0.75 
17 SULFONAMIDE 0.75 
18 SULFONAMIDE-PRIM 0.75 
19 SULFONAMIDE-SEC 0.75 
20 SULFONAMIDE-TERT 0.75 

F U N C T I O N A L I T Y SULFONE 
PASSED I N I T I A L E M P I R I C A L FORMULA TEST 
PEAK QUERY 

ANY P E A K ( S ) P O S I T I O N : 1 2 9 0 - 1 3 6 0 
I N T E N S I T Y : 7 - 10 WIDTH : SHARP TO AVERAGE 

ANSWER YES 
PEAK QUERY 

ANY P E A K ( S ) P O S I T I O N : 1110 - 1170 
I N T E N S I T Y : 7 - 10 WIDTH: SHARP TO BROAD 

ANSWER YES 
ACTION SET SULFONE TO 0 . 5 0 0 

CURRENT V A L U E = 0 . 5 0 0 
PEAK QUERY 

AT L E A S T 2 P E A K ( S ) P O S I T I O N : 1 2 6 0 - 1 3 6 0 
I N T E N S I T Y : 4 - 1 0 W I D T H : SHARP TO AVERAGE 

ANSWER YES 
ACTION ADO 0 . 1 0 0 TO SULFONE 

CURRENT V A L U E = 0 . 6 0 0 
PEAK QUERY 

AT LEAST 2 P E A K ( S ) P O S I T I O N : 1 2 6 0 - 1 3 6 0 
I N T E N S I T Y : 7 - 10 WIDTH: SHARP TO AVERAGE 

ANSWER NO 
PEAK QUERY 

AT L E A S T 2 P E A K ( S ) P O S I T I O N : 1 0 6 5 - 1170 
I N T E N S I T Y : 4 - 1 0 WIDTH: SHARP TO AVERAGE 

ANSWER YES 
ACTION ADD 0 . 1 0 0 TO SULFONE 

CURRENT V A L U E = 0 . 7 0 0 
PEAK QUERY 

AT L E A S T 2 P E A K ( S ) P O S I T I O N : 1 0 6 5 - 1 1 7 0 
I N T E N S I T Y : 7 - 1 0 WIDTH: SHARP TO AVERAGE 

ANSWER Y E S - - - - -
ACTION ADD 0 . 1 5 0 TO SULFONE 

CURRENT V A L U E = 0 . 8 5 0 

Figure 2. Trace of sulfone functionality during interpretation 
of actinospectacin. 
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24. WOODRUFF ETAL. Computer-Assisted Interpretation of IR Spectra 319 

This point i s i l l u s t r a t e d by a second example. A vapor-phase 
spectrum of pr o p i o n i t r i l e was obtained and i t s d i g i t i z a t i o n i s shown 
in Table I I I . For the sake of example, assume the sci e n t i s t entered 
the 2246 cuT* peak as average rather than sharp. The interpretation 
would result i n likelihoods of 0.90 for isocyanate and 0.30 for n i -
t r i l e . Performing the interpretation with the tracing function 
turned on would quickly show that the rules base the dis t i n c t i o n be
tween isocyanate and pro p i o n i t r i l e very heavily on the width of the 
peak i n the v i c i n i t y of 2260 cm-*. Reinterpreting this spectrum 
with the correct, sharp width entered for the 2246 cm"* peak results 
i n a n i t r i l e likelihood of 0.50 and isocyanate of 0.40. 

Table I I I . Digitized P r o p i o n i t r i l e Spectrum 

Relative 
Peak No. Position (cm 1) Intensity Width 

1 2246 10 Average 
2 2996 8 Average 
3 1461 7 Average 
4 2950 6 Average 
5 1431 5 Average 
6 1074 4 Average 
7 787 3 Average 
8 2892 3 Average 
9 1319 2 Average 
10 1386 1 Average 
11 546 1 Average 

Summary 

Through the addition of automated spectrum input on instrument-based 
computers, automated rule generation, and automatic tracing of deci
sion rules, PAIRS has been enhanced to be an even more valuable tool 
for the spectroscopist. PAIRS i s available for distribution from 
the Quantum Chemistry Program Exchange, Indiana University, Blooming-
ton, IN 47405 (Catalog No. QCPE 497). 

Literature Cited 

1. Gray, N.A.B. Anal. Chem. 1975, 47, 2426. 
2. Woodruff, H.B.; Munk, M.E. J. Org. Chem. 1977, 42, 1761. 
3. Woodruff, H.B.; Munk, M.E. Anal. Chim. Acta 1977, 95, 13. 
4. Zupan, J. Anal. Chim. Acta 1978, 103, 273. 
5. Visser, T.: Van der Maas, J.H. J. Raman Spectros. 1978, 7, 125. 
6. Visser, T.; Van der Maas, J.H. J. Raman Spectros. 1978, 7, 278. 
7. Leupold, W-R; Domingo, C.; Niggemann, W.; Schrader, B. Fresenius' 

Z. Anal. Chem. 1980, 303, 337. 
8. Woodruff, H.B.; Smith, G.M. Anal. Chem. 1980, 52, 2321. 
9. Visser, T.; Van der Maas, J.H. Anal. Chim. Acta 1980, 122, 337. 
10. Varmuza, K. "Pattern Recognition in Chemistry"; Springer-Verlag; 

New York, 1980, No. 2, Lecture Notes in Chemistry Series 
11. Woodruff, H.B.; Smith, G.M. Anal. Chim. Acta 1981, 133, 545. 
12. Tomellini, S.A.; Saperstein, D.D.; Stevenson, J.M.; Smith G.M.; 

Woodruff, H.B.; Seelig, P.F. Anal. Chem. 1981, 53, 2367. 

 P
ub

lic
at

io
n 

D
at

e:
 A

pr
il 

30
, 1

98
6 

| d
oi

: 1
0.

10
21

/b
k-

19
86

-0
30

6.
ch

02
4

In Artificial Intelligence Applications in Chemistry; Pierce, T., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1986. 



320 ARTIFICIAL INTELLIGENCE APPLICATIONS IN CHEMISTRY 

13. Farkas, M.; Markos, J.; Szepesvary, P.; Bartha, I.; Szalontai, 
G.; Simon, Z. Anal. Chim. Acta/Computer Techniques and Optimiza
tion 1981, 133, 19. 

14. Szalontai, G.; Simon, Z.; Csapo, Z.; Farkas, M.; Pfeifer, Gy. 
Anal. Chim. Acta/Computer Techniques and Optimization 1981, 133 
303. 

15. Debska, B.; Duliban, J.; Guzowska-Swider, B.; Hippe, Z. Anal. 
Chim. Acta/Computer Techniques and optimization 1981, 133, 303. 

16. Frank, I.E.; Kowalski, B.R. Anal. Chem. 1982, 54, 232R. 
17. Zupan, J. Anal. Chim. Acta 1982, 139, 143. 
18. Trulson, M.O.; Munk, M.E. Anal. Chem. 1983, 55, 2137. 
19. Smith, G.M.; Woodruff, H.B. J. Chem. Inf. Comp. Sci. 1984, 24, 

33. 
20. Tomellini, S.A.; Stevenson, J.M.; Woodruff, H.B. Anal. Chem. 

1984, 56, 67 
21. Tomellini, S.A.; Hartwick, R.A.; Stevenson, J.A.; Woodruff, H.B. 

Anal. Chim. Acta 1984, 162, 227. 
22. Tomellini, S.A.; Hartwick, R.A.; Woodruff, H.B. Appl. Spectrosc. 

1985, 39, 331. 
23. Saperstein, D.D.; "A Scheme For Optimized Infrared Interpreta

tions", paper # 216, 1985. Pittsburgh Conference & Exposition on 
Analytical Chemistry and Applied Spectroscopy, Feb. 25-March 1, 
1985. 

24. DeHaseth, J.A.; Mir, K.A., "A Minicomputer Based Structure Eluci
dation Program", paper # 217, 1985. Pittsburgh Conference & 
Exposition on Analytical Chemistry and Applied Spectroscopy, 
Feb. 25-March 1, 1985. 

RECEIVED December 17, 1985 

 P
ub

lic
at

io
n 

D
at

e:
 A

pr
il 

30
, 1

98
6 

| d
oi

: 1
0.

10
21

/b
k-

19
86

-0
30

6.
ch

02
4

In Artificial Intelligence Applications in Chemistry; Pierce, T., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1986. 



25 

Automation of Structure Elucidation 
from Mass Spectrometry-Mass Spectrometry Data 

K. P. Cross1, P. T. Palmer, C. F. Beckner2, A. B. Giordani3, H. G. Gregg4, P. A. Hoffman5, 
and C. G. Enke 
Department of Chemistry, Michigan State University, East Lansing, MI 48824 

A system has been designed to automate the extraction 
of structural information from mass spectrometry/mass 
spectrometry (MS/MS) spectra. Currently operational 
elements in this system include data bases for MS/MS 
spectra and molecular structures, spectrum matching 
programs, and a structure generator. Individual 
spectra within the complete set of MS/MS spectra are 
related to the molecular substructures from which they 
arise. The correlations between individual MS/MS 
spectra and specific substructures can be determined by 
identifying the compounds that have matching MS/MS 
spectra, and then identifying the substructures they 
have in common. These correlations can supply 
identified substructures to a molecular structure 
generator such as GENOA. This empirical scheme assumes 
no knowledge of the fragmentation process, ion 
structures, or rearrangements. 

The development of mass spectrometry/mass spectrometry (MS/MS) has 
provided the chemical analyst with a powerful tool for structure 
elucidation. The primary goal of this project i s to develop the 
f u l l capacity of t r i p l e quadrupole mass spectrometry (TOMS) as a 
tool for routine structure determination. To accomplish t h i s , we 
have designed and developed computer data bases for spectra and 
structures (1,2), programs for matching spectra (3), and procedures 

1 Current address: Chemical Abstracts Service, Columbus, OH 43210 
2Current address: Finnigan MAT, San Jose, CA 95134 
JCurrent address: Department of Psychiatry, Mt. Sinai School of Medicine and Bronx 
Veterans' Administration Medical Center, New York, NY 10029 

'Current address: Lawrence Livermore National Laboratory, University of California, 
Livermore, CA 94550 

5Current address: Lederle Laboratories, American Cyanamid Corporation, Pearl River, 
NY 10965 

0097-6156/ 86/ 0306-0321 $06.00/ 0 
© 1986 American Chemical Society 
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322 ARTIFICIAL INTELLIGENCE APPLICATIONS IN CHEMISTRY 

for determining spectrum/ substructure correlations. These tools 
were designed for integration into a complete system for on-line 
structure determination by MS/MS. 

Structure analysis by MS/MS d i f f e r s from normal MS in that each 
of the fragment ions from the sample ionization process i n the 
source can be selected, one mass at a time, for further 
fragmentation and subsequent mass analysis. The ion i n the normal 
mass spectrum selected for analysis i s call e d a parent ion. The 
fragments of that ion, generally produced by collision-induced 
dissociation (CID) are called daughters. A mass spectrum of a l l the 
daughters of a particular parent ion (called a daughter spectrum) i s 
obtained by holding the f i r s t mass analyzer constant at the mass of 
the selected parent ion and scanning the second mass analyzer. A 
complete MS/MS spectrum i s a three-dimensional array in which there 
i s a daughter spectrum for every mass represented i n the normal mass 
spectrum. 

MS/MS data are very e x p l i c i t ; daughter spectra may reveal 
structural characteristics of isolated portions of the molecule (4), 
and under certain conditions, a l l masses in a daughter spectrum are 
single-event neutral losses from the parent ion. Thus, clear 
substructure/property relationships can be obtained from MS/MS 
spectra. These relationships can be used to identify substructures 
in unknown compounds. Possible compound structures can then be 
developed from the i d e n t i f i e d substructures. This approach should 
f a c i l i t a t e the i d e n t i f i c a t i o n of unknown compounds not previously 
studied by mass spectrometry. 

Data from the TOMS instrument are used i n two different ways: 
1) to develop a l i b r a r y of spectrum/substructure correlations from 
studies of known compounds and 2) to use the developed correlations 
to determine the substructures and thence the overall structures of 
unknown compounds. The data base required for this process i s a 
li b r a r y of the spectral characteristics of many substructures, 
rather than a l i b r a r y of the spectra of a l l known compounds. In 
principle, millions of compounds could be id e n t i f i e d using a l i b r a r y 
of only a few thousand spectrum/substructure relationships. 

A block diagram of our target system for the automatic 
elucidation of molecular structure i s shown i n Figure 1 (5). While 
the system i s not yet complete, the three data bases and a spectrum 
matching program have been developed and integrated into a 
comprehensive system to acquire, store, match, and correlate the 
MS/MS data. Descriptions of their structures and cap a b i l i t i e s and 
examples of their application are included in this paper. Also a 
molecular structure generator, GENOA (6), has been acquired and 
implemented, but i s not yet integrated into the system. An example 
of the determination of spectrum/substructure correlations and t h e i r 
application in structure determination through GENOA i s also given 
here. 

The flow of data through the system shown i n Figure 1 depends 
on whether the experimental data are from a reference compound for 
the development of the l i b r a r y or from an unknown compound for 
analysis. Reference compound spectra are collected i n the 
experimenter's data base and may be archived i n the reference data 
base. They can also be matched against other spectra from other 
reference compounds by the spectrum matching program. When a match 
i s found indicating that the two compounds have produced an 
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identical ion structure, the molecular structures are compared by 
the substructure searching function to determine the substructure(s) 
they have i n common. These common substructures are candidate 
precursors of the common ion. Through rearrangements, i t i s 
possible for more than one substructure to produce a particular ion. 
Additional compounds with matching spectra or substructures are 
studied u n t i l clear spectrum/substructure correlations are produced. 
Once the correlations are made, the substructure(s) associated with 
a particular spectrum are stored i n the structure/substructure data 
base, and are l o g i c a l l y linked to that spectrum. 

The spectra from an unknown compound are matched against the 
reference spectra to produce a l i s t of the substructures that are 
related to the matched spectra. When this substructural information 
has been extracted from the MS/MS spectra, i t i s entered into the 
molecular structure generator called GENOA (6). GENOA, which i s 
constrained by heuristic chemical rules, uses a l l available 
composition and structure information, including overlapping and 
nonunique substructures, to postulate the number and identity of a l l 
possible molecular structures of the unknown compound. I f the 
resolution of any remaining structural ambiguities i s essential to 
the experiment, additional information derived from MS/MS or other 
sources i s fed to GENOA to further reduce the number of output 
structures. This structure elucidation scheme combines an 
exhaustive and automatic algorithm for the evaluation of the 
structural p o s s i b i l i t i e s , the experimenter's chemical i n t u i t i o n , and 
the knowledge base of the experimentally determined 
spectrum/substructure correlations. 

There are three data bases present i n our MS/MS information 
management system, one for immediate experimental data and two for 
archival data. The experimenter's data base has been described 
elsewhere (1). One archival data base manages the MS/MS spectra, 
while the other manages the structures and substructures. The two 
archival data bases are l o g i c a l l y linked together so that a l l 
information concerning a particular molecule or substructure i s 
associated with i t s spectra. 

The MS/MS spectrum data base i s capable of storing and 
correlating a l l types of MS/MS spectral data including parent, 
daughter, neutral loss, and conventional mass spectra (2 ) . A l l 
spectra are stored i n an unabridged format and a l l spectra for each 
compound are l o g i c a l l y associated with that compound. Redundant 
spectra such as those taken under different operating conditions are 
a l l associated with a single compound registry number thereby 
simplifying both the r e t r i e v a l and maintenance of the data base 
information. 

The most important feature of the reference spectrum data base 
i s the provision to generate and store inverted data (data that are 
presorted on various secondary elements of the record). The data 
present i n the spectrum data base may be inverted upon any specified 
characteristic, such as m/z value, and then be retrieved using that 
characteristic. For instance, a data f i l e inverted about the 
daughter m/z value w i l l contain, for each m/z value, a l i s t of 
pointers to the reference daughter spectra that have a peak at that 
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mass. Hence the pointers to a l l reference spectra containing a 
particular m/z value may be very quickly retrieved. When Boolean 
algebra operations are performed on inverted data l i s t s , the power 
of the design increases dramatically. A prescreen for a l l reference 
daughter spectra containing the major features of a test spectrum 
such as peaks at 43.0 and 57.0 but not 119.0 reduces greatly the 
number of reference spectra that need to be matched i n greater 
d e t a i l . In addition to a daughter m/z value, spectral data may be 
inverted about molecular weight, empirical formula, and parent ion 
m/z value. Over 30,000 primary spectra and other information are 
currently stored i n the spectrum data base as well as MS/MS spectra 
corresponding to several s p e c i f i c classes of compounds. 

The structure data base was designed to contain both molecular 
structures and substructures (7). The MS/MS instrument s p e c i f i c a l l y 
provides a substructure/property relationship where several daughter 
spectra may correspond to a single substructure and any daughter 
spectrum may correspond to more than one substructure. Even though 
a simple 1:1 correspondence between daughter spectra and 
substructures cannot be assumed, there i s a basis for a l o g i c a l l i n k 
between the MS/MS spectra i n the spectral data base and the 
respective substructures i n the structure data base. This l i n k 
allows r e t r i e v a l of structural information from the reference 
daughter spectra best matching the unknown spectrum. Structures 
present i n the structure data base may be retrieved v i a substructure 
number, Chemical Abstracts Service number, or spectrum data base 
number, and then drawn. 

The structures and substructures are stored unambiguously using 
a modified version of the Morgan algorithm for encoding molecular 
structures v i a connectivity tables. The version of the algorithm 
implemented included the modifications described by Wipke and Dyott 
(8) for the representation of stereochemical isomers. The notation 
of the elements was expanded to include a l l known elements. Any 
molecule up to 128 atoms i n size (excluding hydrogens) may be 
included i n the data base. The structure data base contains over 
30,000 structures corresponding to the spectra present i n the MS/MS 
spectrum l i b r a r y as well as substructures corresponding to various 
reference daughter spectra. 

Matching MS/MS Spectra 

The MS /MS spectra matching program allows the chemist to match any 
MS/MS spectrum against either MS or MS/MS spectra i n the reference 
spectrum data base (3). The program uses inverted data organized by 
m/z value to l o g i c a l l y eliminate inappropriate reference spectra. 
The program f i r s t determines the data base frequency (length of the 
pointer table) of each major peak i n the experimental daughter 
spectrum and then ranks the peaks i n ascending order of frequency. 
Inverted data l i s t s of reference spectra containing peaks are 
retrieved i n this order and l o g i c a l l y ANDed together u n t i l the 
number of candidate reference spectra i s s u f f i c i e n t l y small. 
Additional reductions in the number of candidate spectra i s possible 
by using molecular weight, parent ion m/z value, and empirical 
formula may also be invoked to further reduce the number of 
candidate spectra. When matching daughter spectra, specifying the 
parent ion m/z value alone usually produces a s u f f i c i e n t l y small 
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number of candidate spectra. Abundance values are not considered 
and the reference data base i s not accessed u n t i l intensity-based 
matching i s performed. The short matching times achieved with t h i s 
design makes i t p r a c t i c a l to work with unabridged spectra. 

Once the number of candidate reference spectra has been reduced 
to reasonable size (25-100), intensity-based matching i s performed 
to characterize the correspondence between the experimental and 
remaining candidate spectra. Several different factors indicating 
the degree to which the spectra match i n various respects are 
determined. The values of these match factors are used to 
distinguish spectra that arise from identical substructures from 
those that arise from different substructures. 

The various match factors calculated by the matching program 
are l i s t e d in Table I. The overall match factor (PT) i s a 
combination of forward and reverse searching techniques. I t takes 
into account the deviations i n intensity of the sample spectrum 
peaks with respect to the candidate spectrum peaks and vice versa 
for a l l peaks in both spectra. The pattern correspondence match 
factor (PC) i s a forward searching match factor which takes into 
account the intensity deviations of sample spectrum peaks with 
respect to the candidate spectrum peaks for peaks common to both 
spectra. This factor detects structural s i m i l a r i t i e s , such as 
substructures, based on common spectral patterns. NC, NS, and NR 
give an indication of the number of peaks upon which the match was 
based and i n which direction i t was most successful. IS and IR 
indicate the magnitude of the ion current unmatched in each 
direction. These match factors are similar to those proposed by 
Damen, Henneberg, and Wiemann (9). 

Because instrument operating conditions can seriously affect 
the r e l a t i v e i n t e n s i t i e s of ions i n daughter spectra, there was a 
need to know the range of conditions over which the daughter spectra 
of identical parent ions could be distinguished from a l l other 
daughter spectra. Daughter spectra were collected for several 
compounds for every combination of a wide range of operating 
parameters. An acceptable range of standard conditions was defined 
as that over which the spectrum matching system would provide high 
match factors for daughter spectra of the same compound. 

Of the 32 instrumental parameters on our TOMS, only the 
c o l l i s i o n energy and c o l l i s i o n c e l l pressure were found to 
s i g n i f i c a n t l y affect MS/MS spectra. The acceptable range of 
c o l l i s i o n c e l l pressure was that found to y i e l d f i r s t order 
fragmentation regardless of the compound type. Since different 
c o l l i s i o n c e l l pressures are required to obtain f i r s t order 
fragmentation for different compounds, b r i e f k i n e t i c studies are 
used to determine the fragmentation order, and to ascertain the 
pressure necessary to provide f i r s t order fragmentation. Similarly, 
we have determined a useable operating range for the c o l l i s i o n 
energy of 15 to 25 eV. 

The procedure for obtaining the spectrum/substructure relationships 
i s as follows. For a selected known compound, a daughter spectrum 
i s acquired for every mass value greater than 1% r e l a t i v e intensity 
that appears i n the primary spectrum of that compound. These 
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Table I. Match Factor Definitions 

PT An overall match factor that indicates how well the 
intensities of a l l the peaks in the two spectra match. 

PT = (Σ Ys + Yr - 2* |Yr - Ys|) / (Σ Ys + Σ Yr) * 100 

where Yi = log2 (Intensity/Total Ion Count) 

Ys and Yr correspond to the adjusted abundances at each mass 
in the sample and reference spectra respectively 

PC A pattern correspondence factor that indicates how well the 
intensity of the peaks in common match. 

PC = (Σ Ys - |Yr - Ys|) / (Σ Ys) * 100 

NC The number of peaks common to both the candidate and unknown 
sample spectrum. 

NS The number of peaks remaining unmatched in the unknown 
sample spectrum. 

NR The number of peaks remaining unmatched in the reference 
spectrum. 

IS The percent t o t a l ion current of the sample spectrum that 
was unmatched in the comparison due to NS. 

IR The percent t o t a l ion current of the reference spectrum that 
was unmatched in the comparison due to NR. 
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daughter spectra are then matched against a l i b r a r y of daughter 
spectra from reference compounds. 

After the spectral matching process has been completed, the 
l i s t of compounds with the top matching daughter spectra are 
i d e n t i f i e d and retrieved for each daughter spectrum in the reference 
compound. The molecular structures of the compounds with best 
matching spectra are drawn and compared for common substructures. 
The common substructures y i e l d candidate spectrum/substructure 
correlations. Additional compounds are then tested to confirm or 
modify each correlation. Once the daughter spectrum i s correlated 
with one or more substructures, this daughter spectrum i s stored in 
the spectrum data base and i s linked to the associated substructures 
stored i n the structure data base. 

An heuristic program written by Shelley (10) has been adapted 
for our computer system to display molecular structures and 
substructures from connectivity tables. Since the molecular 
structure and substructure representations are stored i n a unique, 
irredundant form, the structure drawings f a c i l i t a t e visual 
comparison for commonalities. 

An example of the spectrum/substructure determination process 
i s i l l u s t r a t e d for the reference compound di-n-octylphthalate. 
Daughter spectra were acquired for every major ion (above 1* 
rel a t i v e intensity) that appeared in the conventional mass spectrum 
(Figure 2) of the reference compound. A l l the daughter spectra were 
then matched against the reference daughter spectra of the same 
parent mass (but from different compounds) i n the data base. The 
results of some of the matches are described below. 

The match of the 105+ daughter spectrum of di-n-octylphthalate 
against the reference l i b r a r y of m/z 105 daughter spectra i s 
presented in Table I I . The top four matching spectra a l l correspond 
to structure I I I i n Figure 3. Some of the spectra used i n th i s 
match are shown i n Figure 4. Note that the top four matching 
daughter spectra are very similar; a l l three contain the same peaks, 
only the intensity patterns are different (NR, NS, IS, and IR for 
the three are a l l zero). There i s a large difference i n overall 
match factor values (PT) between daughter spectra representing the 
correct substructure and that of the next best match. 

Table I I . Match of 105+ Daughter Spectra vs. Di-n-octylphthalate 

PT PC NC NS NR IS IR Compound 

100 100 2 0 0 0 0 Di-n-octylphthate 
99 99 2 0 0 0 0 D i-n-pentylphthalate 
98 98 2 0 0 0 0 D i-n-butylphthalate 
98 98 2 0 0 0 0 D i-n-ethylphthalate 
66 93 2 0 2 0 31 4-t-butyl-l,2-benzenediol 
60 85 2 0 2 0 20 2-t-butyl-4-methylphenol 
38 50 1 1 3 42 29 p-t-butylbenzyl alcohol 
36 50 1 1 3 42 52 2-t-butyl-6-methylphenol 

The results of the match of the m/z 149 daughter spectrum of 
di-n-octylphthalate against m/z 149 daughter spectra from other 
compounds i n the reference l i b r a r y i s given in Table I I I . The 
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Figure 3. Substructure (I and I I I ) , ionic structure ( I I ) , and 
molecular structure (IV) produced by structure drawing program. 

 P
ub

lic
at

io
n 

D
at

e:
 A

pr
il 

30
, 1

98
6 

| d
oi

: 1
0.

10
21

/b
k-

19
86

-0
30

6.
ch

02
5

In Artificial Intelligence Applications in Chemistry; Pierce, T., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1986. 



330 ARTIFICIAL INTELLIGENCE APPLICATIONS IN CHEMISTRY 

.4? 100 
"en 
S 1 0 -î 

D î — η —octyl —phthalate 

1 

100 

c 10 

100 

10 

-T? 100 
'cn 

5 1 0 

^ 100 
'(0 

I 1 0 

c 1 

100 "1 
'cn 5 
c 
<u 10 1 
c 1 

'to 
£ 10 

1 

100 

S 1 0 

Ί ' 1 1 H " 

Di-n- -penty l -phthalate 

Ί 1 1 r ~ 

Di—n —butyl —phthalate 

τ 1 1 1 — I" 

p - t -buty lbenzy l alcohol 

ι • 1 • 1 ' — η · r 

2—t—butyl — 6 — m e t h y î p h e n o ! 

π j 1 1 1 Τ 1 Γ 

Senzy!—t—butano! 

I 1 1 1 ι 1 Γ 

2~t -buty l—4-methy lphenol 

Τ 1 1 1 1 1 1 1 Γ 

4—t—butyl—1,2-benzenedioi 

τ j 1 1 « j 1 [ 1 Γ 
0 20 40 60 80 100 

m / z 

Figure 4. Selected daughter spectra of parent mass 105 from 
reference l i b r a r y . 
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daughter spectra u t i l i z e d i n the matching process are shown i n 
Figure 5. The top four matching spectra a l l correspond to the same 
molecular substructure, namely the phthalate substructure (structure 
I i n Figure 3). At this point, i t i s necessary to make a 
dis t i n c t i o n between a substructure and an ionic structure. The 
substructure correlated with the top four matching spectra i s 
structure I I i n Figure 3 whereas the ionic structure of the parent 
ion m/z 149 i s structure I I i n Figure 3. It i s not necessary to 
know the ionic structure for t h i s empirical approach. 

Table I I I . Match of 149+ Daughter Spectra vs. Di-n-octylphthalate 

PT PC NC NS NR IS IR Compound 

100 100 4 0 0 0 0 D i-n-octylphthalate 
96 96 4 0 0 0 0 D i-n-butylphthalate 
87 86 4 0 0 0 0 D i-n-pentylphthalate 
87 86 4 0 0 0 0 Di-n-ethylphthalate 
54 57 3 1 7 3 2 2-t-butyl-4-methylphenol 
44 56 3 1 10 9 15 p-t-Butylbenzyl alcohol 
42 35 1 3 1 19 29 p-t-amylphenol 
35 61 3 1 10 3 26 2-t-butyl-6~methylphenol 

The compounds yielding the top four daughter spectra are di-n-
octylphthalate, di-n-butylphthalate, di-n-pentylphthalate, and 
diethylphthalate. Once again, only the r e l a t i v e intensities d i f f e r 
between these daughter spectra. It i s important that these spectra 
are properly grouped by the spectrum matching program and that 
there i s a substantial difference between the overall match factors 
of the matched spectra and those corresponding to unrelated 
substructures. The difference between the overall match factor of 
the unknown and the best matching daughter spectra corresponding to 
a different substructure i s 46. Since the overall match factor 
range i s 0-100 and the variance within the similar daughter spectra 
i s 13, a value of 46 represents a good separation. The next best 
matching daughter spectrum outside of this group of three 
corresponds to a substructure of 2-t-butyl-4-methylphenol. 

From the daughter spectra of di-n-octylphthalate, we were able 
to determine two spectrum/substructure correlations; the 149+ 
daughter spectrum to structure I in Figure 3 and the 105+ daughter 
spectrum to structure I I I in Figure 3. In order to obtain spectrum 
substructure relationships for the a l k y l portions of the reference 
molecule di-n-octylphthalate, we would then match other portions of 
the complete MS/MS spectrum against those of compounds containing 
a l k y l substructures. However, this portion of the reference l i b r a r y 
has not yet been developed. Thus, to complete the structure 
elucidation we have used standard methods of spectral interpretation 
(11). As w i l l be shown, these methods can also lead to useful 
spectrum/substructure relationships. 

Since the substructure represented by the daughter spectrum of 
the m/z 149 ion was the largest i d e n t i f i a b l e substructure i n the 
compound, the parent spectrum of m/z 149 was used to obtain data 
related to the R groups attached to the phthalate substructure 
(Figure 6). The largest ion (149+) associated with the phthalate 
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Figure 5. Selected daughter spectra of parent mass 149 from 
reference li b r a r y . 
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substructure was used since the neutral losses leading to i t s 
formation correspond to the groups attached to the phthalate 
substructure. This parent spectrum need not be acquired from the 
TOMS di r e c t l y , since i t can be generated from the set of daughter 
spectra for the unknown. The parent spectrum of m/z 149 has 4 major 
(non-isotopic) peaks at m/z 167, 261, 279, and 391. This 
corresponds to neutral losses of 18 (167-149) 112 (261-149), 130 
(279-149), and 242 (391-149). The neutral loss of 112 i s CsHie, the 
loss of 130 i s CeHi70H (which may represent an a l k y l group) and the 
loss of 242 i s C8H17OC8H17 (which i s a rearrangement product). The 
neutral losses i n the m/z 149 parent spectrum are thus d i r e c t l y 
related to the two CeHi7 a l k y l substructures i n the reference 
compound. The low mass ion series i n the primary mass spectrum i s 
also related to the a l k y l chains and the unbroken sequences of ions 
every 16 mass units i s indicative of unbranched alkanes (11). 

The GENOA program i s a constrained molecular structure generator 
resulting from the Stanford Dendral project (12,13,14) and marketed 
by Molecular Design Ltd (6). This program generates molecular 
structures using the overlapping substructural information obtained 
from the daughter spectrum/substructure relationship and the 
empirical formula of the compound. Additional spectral and non
spectral information from other sources may also be included. 
Heuristic rules determine whether a particular generated structure 
i s chemically plausible, and whether or not i t i s retained. The 
advantage of the GENOA program i s i t s a b i l i t y to exhaustively 
produce a l l the plausible compounds given the generation 
constraints. This capability eliminates the p o s s i b i l i t y that the 
chemist might overlook any possible compounds. In many cases, the 
number and types of different structures that are produced suggest 
the nature of the missing structural data. The experiments needed 
to acquire such data may then be obtained from the known 
spectrum/substructure correlations. 

An essential piece of information required by GENOA i s the 
empirical formula of the unknown compound. We have developed 
software that adapts the standard "molecular weight versus possible 
empirical formulae" table. U t i l i z i n g a l l pertinent MS/MS data, 
several constraints can be placed upon the empirical formula 
generator, and i t generates a l l possible empirical formulae 
consistent with those constraints and the molecular weight. We have 
been using M+l daughter spectrum information instead of high 
resolution mass spectrometry to aid i n the determination of the 
empirical formula of an unknown compound (4,15). The daughter 
spectrum of the M+l isotope ion contains peak pairs at adjacent 
masses representing the dist r i b u t i o n of the 1 3C atom between the 
ionic and neutral fragments. The rel a t i v e intensities of these 
daughter pairs depends on the ra t i o of carbon atoms lost to carbon 
atoms retained i n fragment ion of the M+l ion to the observed 
daughter ion. Hence the peak height or area ratios can be u t i l i z e d 
to obtain the number of carbon atoms present in the compound. Once 
the number of carbon atoms i s determined by this method, i t used as 
a constraint to the empirical formula generator. The resulting 
reasonable empirical formulae are given to GENOA. 
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molecular ion of di-n-octylphthalate. 
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For example, to determine the empirical formula of 
di-n-octylphthalate, the daughter spectrum of the 1 3C containing 
molecular ion (392) was obtained (Figure 7). The relative peak 
areas of adjacent peak pairs at m/z 149 and 150 is 2:1. This 
indicates that the M+l ion is twice as like l y to lose a 1 3C atom as 
retain i t . Thus the ratio of the number of carbon atoms lost to 
those retained i s 2:1. Since the identified phthalate substructure 
contains 8 carbons, the unknown compound (di-n-octylphthalate) must 
contain 24 carbon atoms. These data, along with the molecular 
weight of 390 as determined from the conventional CI mass spectrum 
of the unknown was fed into the empirical formula generator and the 
output was one empirical formula: C 2 4 H 3 8 O 4 . 

Given the phthalate substructure, the two alkyl substructures 
and the empirical formula, GENOA can now be used to generate a l l 
plausible molecular structures. The oxygen in the C8H17OH group is 
allowed to overlap with either terminal phthalate oxygen. With this 
information, GENOA constructs only one molecular structure 
(structure IV of Figure 3) and i t i s di-n-octylphthalate. The 
number of generated structures depends on the completeness of the 
information provided. If the branching of the alkyl group is not 
specified, 89 different structures are generated which represent a l l 
the isomeric permutations of the alkyl groups. The identities of 
these generated structures, however, would provide clues as to 
further needed information. In cases where MS/MS information cannot 
determine a unique result, additional spectral and non-spectral 
information may be given to GENOA as structural constraints. 

Conclusions 

The software tools for structure determination by MS/MS are now at a 
stage where we can begin to apply them to real elucidation problems. 
Nearly a l l of the software tools have been integrated into a 
comprehensive, interactive system. The system has been successfully 
used to develop daughter spectra/substructure correlations and 
extend the MS/MS data bases. The elucidation process is totally 
empirical and does not assume that structural integrity is 
maintained in the ionization or fragmentation process. As a result, 
the ion structures need not be identified. Preliminary results from 
applying the system to structure determination problems have been 

very encouraging. 
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A r t i f i c i a l Intelligence, Logic Programming, and Statistics 
in M a g n e t i c Resonance Imaging a n d Spectroscopic 
A n a l y s i s 

Teresa J. Harner, George C. Levy, Edward J. Dudewicz, Frank Delaglio, and Anil Kumar 
National Institutes of Health Resource for Multi-Nuclei NMR and Data Processing, 
Department of Chemistry, Syracuse University, Syracuse, NY 13210 

Logic Programming in combination with expert directed 
statistical analysis makes possible a unique aproach to 
new expert systems for NMR and other chemical analyses 
as well as for medical applications of NMR. We have 
used this approach to begin understanding the behavior 
of T1, T2 and 1H density in magnetic resonance imag
ing (MRI). Also, we are utilizing this technique 
to develop intelligent behavior within our NMR1 and 
NMR2 spectroscopic data reduction systems. 

Sets of rules generate a solution space which may be 
statis t i c a l , functional or symbolic (non-numerical). 
unlike other expert system environments, the stat
istical foundations which govern many of the "macro-
scopic" inferences are included, allowing for modifica
tion to the underlying "implicit" statistical bases at 
any time. The logic programming environment allows 
modifications to the knowledge-base through automatic 
and user-generated commands, and lends itself to the 
development of easily understood natural language 
interfaces. 

Software for NMR applications i s now in widespread use and i t i s 
therefore important that such packages work well not only in more 
traditional chemical shif t , relaxation or resonance applications but 
in the more recent context as potential pre-processors of imaging data. 

In particular, two systems for NMR spectroscopic analysis, 
IURL(1) (one-dimensional analysis) and MR2(2J (two-dimensional anal
ysis) , are f u l l y operational, while a third system for analysis of 
magnetic resonance imaging (MRI) parameters, i s beginning to emerge. 
While NMR1 and NMR2 are written in conventional numerically based code 
(FORTRftN-77), the MRI system, MRLJÛGLESP combines the use of FORTRAN 
and the logic programming language, Prolog. 

Our research on human tissue discrimination methods deriving 
from MRI parameters i s leading to the evolution of prescribed st a t i s 
t i c a l methods for data screening, normalization and discrimination. 
These are driven by Prolog. In Prolog, sets of logical inferences 

0097-6156/ 86/ 0306-0337$06.00/ 0 
© 1986 American Chemical Society 
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338 ARTIFICIAL INTELLIGENCE APPLICATIONS IN CHEMISTRY 

which carry information about application data types, are capable of 
distinguishing important features. Procedures pass the data through 
those analyses which optimize classification. 

In this paper we note some of the failures inherent in most 
current computer-aided (and manual) NMR spectroscopic techniques and 
reflect on possible solutions via A r t i f i c i a l Intelligence (AI) tech
niques. 

A description of current AI methods which lend themselves to 
problems of this type i s included, as well as a description of 
applications to NMR spectroscopy and MR imaging. Lastly, there i s a 
brief description of MRLJiOCLESP in i t s current preliminary state. 

IWO.- Model Computer Software for Spectroscopic Analysis 

NMR1 i s a graphics-oriented software system containing over 100 
options, each allowing the user a large degree of freedom to analyze 
spectroscopic data in a single dimension. At the core of NMR1 i s a 
set of procedures for data reduction, estimation of i n i t i a l parameters, 
and the u t i l i z a t i o n of a set of convergence methods for baseline 
conditioning, peak identification and curve f i t t i n g . 

Curve f i t t i n g i s currently accomplished using a non-linear 
minimization (modified Levenberg-Marquardt) algorithm for three-
parameter Lorentzians, as well as five additional non-linear peak 
shapes. 

Generally, a user/Chemist may learn a great deal from the 
displays of the Fourier transformed spectra using the options for 
analysis available with graphics interaction. Nevertheless there i s 
a great deal of room for improvement. The following l i s t summarizes 
the most salient current d i f f i c u l t i e s with traditional computer-aided 
analysis: 

1. Subroutines used to obtain quantitative measures of the 
parameters associated with overlapping peaks can end 
in misleading results i f an incorrect theoretical line 
shape has been ut i l i z e d . 

2. Automated i n i t i a l parameter estimation may not be 
accurate and then the user w i l l be required to intercede 
with manual estimation. 

3. It may be necessary to manually i n s t a l l or delete peaks; 
especially when signal-to-noise i s low or when the peaks 
are largely un-resolved. In cases of very small peaks 
or when overlap between peaks i s high, standard algorithms 
may f a i l and return unrealistic linewidth values. 

4. If i n i t i a l estimates are too far from correct values, 
calculations may diverge. Then the process must be 
restarted with better i n i t i a l estimates. 

5. Because of the underlying mathematical assumptions i n 
herent in s t a t i s t i c a l modeling of the data, i f the 
assumptions are for any reason incorrect the f i n a l f i t 
may be poor or good, but not significant. Currently, 
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26. HARNER ET AL. Magnetic Resonance Imaging and Spectroscopic Analysis 339 

software users must have sufficient background in the f i e l d 
to properly interpret the v a l i d i t y of the output from curve 
f i t t i n g and other algorithms. 

In addition to these problems, there exist the set of conditions 
under which the user must manually set a l l i n i t i a l parameter estim
ates. Manual constraints on the parameters may often be the only way 
to obtain a proper convergence i f the true, bounded region of the 
solution i s known by the user, or i f one has some specific knowledge 
of the correct starting values. This may be particularly true i f 
there are additional parameters with complex functional forms such as 
phase angle. Automated paramater setting which takes into account 
some of these problems could lead to more consistent results and 
require less user expertise. 

MR Imaging 
While analytical spectroscopy has been used for many years in order to 
obtain information regarding chemical structure, magnetic resonance 
imaging i s a r e l a t i v e l y new f i e l d . Misleadingly well-resolved 
images may aid an expert Physician in diagnosing human tissue abnormal
i t i e s , but as l i t t l e i s understood about the relationships which exist 
between tissue MRI parameters and tissue health, not to mention 
secondary factors (genetic, environmental, macro-physiological, 
etc.), such judgements, accurate or not, are often purely subjective. 
In similar applications, precedents are well established for the use 
of expert systems as medical diagnostic tools (1,1,5). 

The optimal research strategy involves the systematic search to 
uncover these relationships at the same time as the development of a 
computer methodology proceeds. Such software systems w i l l not only 
give the kind of information about physicochemical structure as have 
previously designed systems for NMR spectroscopic analysis, but w i l l 
serve as co-investigators, f a c i l i t a t i n g through automated procedures, 
analytical tasks which are normally time-consuming and complex. 

Experimental data analysis of tissue parameters and construction 
of an automated format for MRI research has been proceeding in our 
laboratory with seme success. St a t i s t i c a l Analysis has revealed 
that, with the proper normality transformations applied to T^, ^ and 
1H density over eight regions of interest in the human brain (left 
and right sides respectively of Cortical White Matter, Internal 
Capsule, Caudate Nucleus, and Thalamus), the values within tissue 
type generally follow a normal distribution(£). This implies that 
existing discriminant functions may be able to optimally c l a s s i f y 
data according to tissue type (although i n i t i a l results also show 
large overlaps between the normal distributions of several tissue 
types). Indeed, preliminary results have yielded correct class
i f i c a t i o n percentages between 73 and 86%(2). 

As shown in Figure 1, however, s t a t i s t i c a l analysis alone i s 
only one of the steps towards realizing a f u l l y functional system for 
MRI tissue discrimination. Experimental data i s passed through 
software (eventually NMR1/NMR2) for pre-processing. Since the 
s t a t i s t i c a l analyses must themselves be applied to an ever-increasing 
number of regions of interest (ROI's) i t would be of great use to 
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340 ARTIFICIAL INTELLIGENCE APPLICATIONS IN CHEMISTRY 

develop an automated s t a t i s t i c a l treatment methodology for future 
research. Also f i t i s not yet known just what f i n a l precision to 
expect from discriminant analysis, even including secondary descriptor data which should help to obviate overlaps between MRI responses from 
different R0I"s. It seems quite l i k e l y that additional, qualitative 
information, or non-traditional numerical discrimination procedures, 
might be required at some point to approach an accuracy acceptable 
for future c l i n i c a l use of MRI expert systems. Lastly, a general 
computer system architecture must control these procedures for 
highest efficacy. 

Overview of Proposed AI Techniques 

Most researchers are now aware that " A r t i f i c i a l Intelligence" has 
diverse meanings both inside and outside Computer Science. Such a 
situation i s understandable given the actual variety of methods which 
could, without being s t r i c t l y inaccurate, f a l l under the heading of 
AI. It i s therefore important, i f one intends to use AI techniques to 
develop a computer program architecture, to f i r s t define clearly the 
AI related approaches which one has chosen to apply. 

For the present, the following AI tools and techniques comprise 
the building materials intended for construction of our automated 
spectroscopic analysis and MRI tissue discrimination systems: 

Logic Progranmingr and specifically, the programming language 
Prolog, satisfies a specified goal by resolving i t s premises. For 
resolution to take place, these premises must in turn become the 
subgoals for premises which can be satisfied. A goal i s specified 
with a predicate name and a set of arguments whose values must be 
instantiated for the goal to succeed. The goal-to-premise structure 
forms sets of clauses which operate upon the principles of f i r s t 
order predicate logic(8). 

Decision Trees provide the overall structure for problem resolution 
in the current system. The outcome of a test at a particular node in 
the tree i s recorded and directs the next decision for branching. If 
a failure i s encountered at a l l possible branches, the un-resolved 
problem i s passed back up to the node at which there last existed a 
possible, untested, solution. Prolog lends i t s e l f nicely to this 
structure since i t s basic architecture includes decision-making via 
such a "depth-first" search strategy(2J 

Mnfk>i M a s h i n g a n d fiîmîiarîiy Μ « ί ΐ Ω ) are the means by which, at 
any node in the decision tree, an actual test i s made. Within a 
database, l i e s a set of model data structures, to which an attempt i s 
made to match the actual input and output format. The i n i t i a l problem 
i s to find a model which, of a l l stored models, contains the fewest 
differences i n structure between model and actual data set. An 
example i s shown in Figure 2, a system designed to classify human 
brain tissue type. A data set i s entered which contains variable 
names "Cbs","^", "τ 2" and "1H density" as headings in the f i r s t 
row. In the f i r s t column, i t i s found, l i e s a set of integer numbers 
running from 1 to 4, and within the set i t s e l f are "*" 's. Stored 
within the system are a series of general models which identify data 
matrices in sets of predicates defining " f i r s t row", "column", and 
other distinguishing characteristics of data sets. 

By searching the stored models for such characteristics, the 
program constructs a model data set which appears to come closest to 
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[NATURAL LANGUAGE INTERFACE 

IPRE-PROCESSOR: NMR1/NMR2 

[PROLOG CONTROL PROGRAM 
I X Z 

ISTATISTICAU 
EXPERT 
S Y S T E M 

LOGICAL 
INFERENCE 
ENGINE 

EXPERIMENT 
CONTROL 

Figure 1. System Flow Chart 

ACTUAL DATA SET 

Ob? T1 T2 D e n s i t v 

1 663.000 77.0000 96.798 
1 775.000 84.0000 107.554 
2 659.000 82.0000 99.556 
2 * 76.0000 * 
3 619.000 79.0000 99.467 
3 667.000 79.0000 102.868 
4 * 79.0000 * 
4 651.000 80.0000 84.752 

LOGIC PROGRAMMING COPE 

, o b s , . . . , T 1 , . . . , list_of_yariable_jiaees [ a , b, 
T 2 , . . . , D e n s i t y , . . . ] . 

symbol__list[<integers>,<real_numbers>, " * n , . . . ] . 

position_peanings[column(Number,Symbol,Meani n g ) , 
row(Number1,Symbol1,Meaning 1 ) ] . 

Model_data_sets [model1(column(A,B,C) , row(D, Ε , F ) ) , . 
m o d e l n ( c o l u m n ( I , J , K ) , r o w ( X , Υ , Ζ ) ) ] . 

MODEL DATA SET - CLOSEST (GENERAL) MATCH 

Obs T1 T2 D e n s i t y 

1 VAL VAL VAL 
1 VAL VAL VAL 
2 VAL VAL VAL 
2 NONVAL VAL VAL 
3 VAL VAL VAL 
3 VAL VAL VAL 
4 NONVAL VAL NONVAL 
4 VAL VAL VAL 

Figure 2. Pattern Matching with Prolog 
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342 ARTIFICIAL INTELLIGENCE APPLICATIONS IN CHEMISTRY 

that defined by the structure of the input data set. For that 
particular model, there are now a set of options for action upon the 
data. The variable name "Cbs" i s associated with a set of classes, 
therefore the program knows that 4 classes are represented by the 
data set. The variable names "Tin, "T2W and "1H" density are untrans-
formed names, which information, taken with the fact that "*" has 
been used in the place of data in certain positions identifies the 
set as being raw and untransformed. The program w i l l then proceed by 
"cleaning up" the raw data set, making appropriate transformations 
and applying a discriminant analysis to the set, under the assumption 
of four classes. 

In actual practice a number of tests must be passed at various 
nodes before f i n a l classification takes place. Also, a prohibitive 
time would be required to search a large database of models for ones 
which most closely approximated the actual data set. For this reason 
the concept of similarity nets i s introduced. In this case, a more 
general model i s f i r s t chosen, one which i s clearly not completely 
absurd. A subset of other models which are variations of this f i r s t 
general model then provides the index for the f i n a l choice of model. 
Such a reduction in the model l i s t s greatly reduces the search space 
for the closest f i t . 

While a great many other techniques may be employed to ensure 
a consistent, and efficient, logic-driven software, the techniques 
described above are the primary drivers for the effective resolution 
of goals in the prototype expert system MRILJ/XLESP. Once a detailed 
accounting i s made of the characteristics which f u l l y describe input 
and output, providing Prolog code i s quite easily accomplished. 

Specific Applications: 
Imaging 

The prototype expert system, MRXJJOG_ESP has been written to aid 
in classifying tissue type from primary and secondary tissue descrip
tors and i s capable of limited applications. While i t would be 
incorrect to say that the current system i s a robust expert system, 
since i t i s not yet able to f u l l y make the inferences regarding the 
input data sets which would lead to automatic tissue classification, 
the program does successfully enable serial combinations of s t a t i s t i c a l 
procedures to be run from a central Prolog co n t r o l l i n g program. 
Commands are parsed so that simple English language structures can be 
interpreted, and a tracking procedure keeps an automatic log of 
analyses run and steps taken. 

At the experimental interface, we expect to ultimately assemble 
a data set of approximately 500 patients. Thus far we have only worked 
on a much smaller data set of 23 individuals. The actual protocol for 
obtaining this data i s described elsewhere(S) · 

Figure 3 provides a sample session with MRI_JOG_ESP. The 
controlling code i s written in Prolog, while numerically oriented, 
analytical procedures for classification are written in Fortran-77. 
xhe system has been written to run under Data General's AOS/VS 
operating system (MV series computers) but i t i s expected to be 
easily ported to the Digital Equipment VAX VMS environment. 

At the front end of the controlling program there are three main 
branches in the form of predicates: 
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26. HARNER ET AL. Magnetic Resonance Imaging and Spectroscopic Analysis 343 

WELCOME TO MRILOG 
Use the o p t i o n s l i s t below to guide your i n t e r a c t i o n 
w h i l e keeping your responses r e l a t i v e l y s i m p l e , and 
you should have few problems working w i t h i n the system. 

GENERAL FEATURES 

I. a u t o _ a n a l y s i s : based on a user s p e c i f i e d 
data f i l e , program determines a n a l y s e s and 
runs them. 

I I . u s e r _ d r i v e n _ a n a l y s i s : user s p e c i f i e s f i l e s 
and run l i s t , 

I I I . h e l p _ f i l e : probably a good pl a c e to s t a r t . 

What i s your g e n e r a l o b j e c t i v e , 
based on the i n f o r m a t i o n j NOTE ! 
s u p p l i e d above? ! Answers can take a ! 

j n a t u r a l language form) 
! but user should t r y j 
I to respond w i t h i n t h e i 
j c o n t e x t of the prompt! 

! : I would l i k e to perform a user d r i v e n a n a l y s i s . 

Reset? ( y e s / n o / a l l ) 

REMEMBER: Regular " r e s e t " w i l l 
d e l e t e a l l the data f i l e s accum
u l a t e d so f a r EXCEPT: 

< u s e r _ a n a l y s i s ( x x x ) > 
and <auto__analysis (xxx )>. 
By s p e c i f y i n g " a l l " i n the r e s e t 
command, these w i l l a l s o go. 
See Users Manual or Help f i l e 
f o r f u r t h e r i n f o r m a t i o n . 

no, 
Figure 3. An I n t e r a c t i v e Session wi t h MRI_LOG_ESP. 

Continued on next page 
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Please e i t h e r g i v e a c l e a r and 
con c i s e d e s c r i p t i o n of 
your o b j e c t i v e , or type i n 
a l i s t of the procedures 
you wish to invoke f o r d a t a 
a n a l y s i s . 

AVAILABLE PROCEDURES FOR ANALYSIS 

c a l l name 

<twod> 

<normtest > 
<tran> 

<tran_disc> 

<disc__fun> -

d e s c r i p t i o n 

two d i m e n s i o n a l 
g r a p h i c s . 

- n o r m a l i t y t e s t i n g . 
- t r a n s f o r m a t i o n of 

v a r i a b l e s . 
- d i s c r i m i n a n t a n a l y s i s 

of transformed v a r s . 
d i s c r i m i n a n t a n a l y s i s 
(untransformed data) 

L e t ' s do a normtest. 

SEARCHING AVAILABLE ANALYSES FOR YOUR SPECS 

The f o l l o w i n g a n a l y s e s w i l l be run u s i n g data from an 
in p u t f i l e . I f the l i s t i s not c o r r e c t i n d i c a t e 
t h a t a change i s r e q u i r e d . Otherwise, type "go", 

(or some ot h e r a f f i r m a t i v e ) 

RUN LIST: 
[normtest ] 

I : go. 
INPUT FILE SPECIFICATION: normtest 

W i l l t h i s be new data? 
! : no. 
You can use any f i l e which c o n t a i n s PROPERLY FORMATTED da t a . 

What i s ( a r e ) your i n p u t f i l e name(s)? 
I: I want to examine t1cc and t 2 c l . 

Do you wish to examine f i l e t 1 c c 
i : no. 

Do you wish to examine f i l e t 2 c l 
i : no. 

Figure 3. Cont inued. 

Continued on next page 
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S p e c i f i e d i n p u t f i l e s scanned. 
S t a r t i n g normtest u s i n g i n p u t f i l e : t 1 c c 
S t a r t i n g normtest u s i n g i n p u t f i l e : t 2 c l 

NORMALITY TESTING OF VARIABLES (normtest) 

A l l output has been appended i n u s e r _ _ a n a l y s i s . 007 

Do you want a p r i n t o u t 
i : no. 

Please e i t h e r g i v e a c l e a r and 
c o n c i s e d e s c r i p t i o n of 
your o b j e c t i v e , or type i n 
a l i s t of the procedures 
you wish to invoke f o r d a t a 
a n a l y s i s . 

AVAILABLE PROCEDURES FOR ANALYSIS 

c a l l name d e s c r i p t i o n 

<disc_fun> 

<twod> 

<normtest > 
<tran> 

< t r a n_d i s c > 

two d i m e n s i o n a l 
g r a p h i c s . 
n o r m a l i t y t e s t i n g , 
t r a n s f o r m a t i o n of 
v a r i a b l e s . 
d i s c r i m i n a n t a n a l y s i s 
of transformed v a r s . 

d i s c r i m i n a n t a n a l y s i s 
(untransformed data) 

h a l t . 

Figure 3 . Continued. 
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• aiito__analysis 

• ujser^âriveru^nalysis 

• helçL/ile 

In the emerging system, auto_analysis represents the automated 
log i c - d r i v e n search tree which i s able to apply the appropriate 
analysis from logical inference and/or upon receipt from the user of 
a description of the problem space (data set). The program w i l l then 
search, sort and classify the data as appropriate to each reasoning 
technique l o g i c a l l y demanded by the problem/data input. In many 
respects auto_analysis represents the "expert system core". For the 
i n i t i a l input data set, the user i s questioned regarding a f i n a l 
objective. This objective, in combination with the results obtained 
from each analysis, are what provide deterministic control, as the 
i n i t i a l data set i s formatted for subsequent analysis and output from 
previous analysis i s i t s e l f reformatted (as a result of computer 
generated interpretation of the output). This reformatting of the 
output i s , once again, determined by the next analysis which the 
program deams essential to the satisfaction of the primary, user-spec
i f i e d goal. 

The capability of determining the order of procedures, based on 
the user specification of the end goal alone f and to know at what 
point computation should stop with a result recorded, i s the implemen
tation of the theoretical AI techniques described above. 

Conversely, useiudriveru^nalysis allows the user to specify from 
one to a l l of the available analyses and the specific data sets to 
use for each given analysis. Thus, i f predicates twod and normtest 
were specified, a "Rurulist" would be interpreted consisting of: 

[tnodrnoimtest] 

It should be noted that a l l the formatting knowledge required to run 
auto-analysis i s also required to run a user analysis. In this case 
one i s simply overriding the computers "better judgement" in terms 
of procedural protocol. 

The following predicates comprise the current s t a t i s t i c a l pro
cedures handled by the system. 

1. <twod> - two dimensional graphics 

2. <threeD> - three dimensional graphics 

3. <nonntest> - normality evaluation of variables 

4. <trans> - normality transformation of variables 

5. <disQ_fun> - linear discriminant analysis 

These programs, written in Fortran-77 are accessed through 
systems c a l l s in Prolog. Naturally this l i s t w i l l be greatly augmented 
in future versions of the program. However this set of s t a t i s t i c a l 
analyses i s comprehensive in-so-far as a data set may be screened and 
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classified using these routines alone, thereby providing a general 
but simplified model upon which to base the l o g i c a l inferences 
which govern choice of analysis. 

At the top level of the program, having provided the "analytical 
objective" for a given data set, the user i s asked to verify that the 
program has understood the command correctly. If this i s verified the 
program w i l l go on to ask the user for the name of the input f i l e 
containing data from which i t i s desired to proceed with testing. 

A copy of the results of every test on a set of data i s saved 
and when a single run of a series of tests has been made, the results 
of each procedure i s appended in a single f i l e . 

Commands are requested from the user at f a i r l y regular inter
vals. The program w i l l accept most general sentences which may be 
construed by the parser to e l i c i t some form of action for which the 
program has been written. 

While several predicates require and accept only affirmative 
(yes) or negative (no) responses from the user, for the most part, 
communication with the program i s governed by what has been termed a 
"Context Parser", the main predicate of which has three levels to 
handle varying levels of lingui s t i c complexity. 

The aim of the graphics software, (twod, threeD), i s to enable 
the user to rapidly examine a large number of two- and three-dimension
a l scatter plots. At present the program i s capable of handling up to 
120 variables with up to 200 observations for each. 

Predicate normtest tests/evaluates normality of the given set of 
data points (corresponding to any variable), while, disc_fun performs 
a linear discriminant analysis on groups of data (maximum of 10 
groups) with respect to any selected variables (maximum of 20 var
iables) · 

There are only two types of output f i l e s and output f i l e names. 
These are: 

autXL_3nalysia_out<xxx> 

and 

user%jEmalysis_out<xxx> 

Where "<xxx>" symbolizes a sequence number. As runs are made, each 
one i s placed in a l i s t of output f i l e s . As runs are made, whether 
in auto or user mode, an accumulation of results i s in e v i t a b l e . 
Also, due to the method by which input and output f i l e s are appended, 
there i s some accumulation of "garbage" f i l e s . The procedure reset 
provides a way of deleting unecessary f i l e s . 

N M R I and similar Software (a>eçtresçppic Analysis) 
Precisely how the AI techniques discussed above might improve the 
current, numerically-based software i s s t i l l somewhat speculative. 

Close inspection of the current failings discussed previously 
indicates that their source l i e s in two main areas which are d i f f i c u l t 
for numerically based algorithms to handle: 

1. The problem of defining the baseline and locating and 
defining the spectral features (peaks). 
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348 ARTIFICIAL INTELLIGENCE APPLICATIONS IN CHEMISTRY 

2. The correct setting of i n i t i a l parameters. 

For quantitative characterization of molecules including analyses 
of in vivo (metabolic) NMR spectra, the problem of peak overlap and 
baseline identification (which are particularly problematic for i n 
Vivo spectroscopy) i s really only one part of the more general 
experimental problem of discovering spectral differences arising in 
complex environments. We can greatly increase the efficiency of the 
ov e r a l l experimental process and solve the peak quantification 
problem u t i l i z i n g the data base structure inherent in a logic program
ming framework. 

With sets of rules providing the facts from which a f u l l model 
can be constructed, the program i s informed regarding the origin of 
the spectrum to be analyzed. A comparison i s then made between model 
and actual spectra. Anomalous features are thus identified. 

In (2) above, a second d i f f i c u l t y with spectral analysis i s 
identified which might be alleviated through the use of logic program
ming methods: The setting of i n i t i a l parameters. As noted above, 
this i s generally an automated procedure i n NMR1 but sometimes 
does require user intervention. A minimization algorithm which did 
not derive i t s information from a pre-set local minimum could be 
applied at each minimum in the spectrum and then proceed to examine 
the consistency of the results. Such a method would not be d i f f i c u l t 
to implement within the framework of a logic-driven, controlling algor
ithm. By applying this minimization algorithm at multiple minima and 
by examining consistancy (and not by numerical methods alone!), a 
determination would be made as to whether the derived minimum was 
false or global. 

Investigation thus far has been made into characteristic i n Vivo 
3 1 P peaks with some thought to localized pattern matching (1). In the 
coming year we w i l l begin to look at coding characteristic i n Vivo 
spectra and developing a Prolog algorithm which analyzes the results 
of the minimization algorithm. For the most part, i t i s hoped that 
MRÎ J/DQ_ESP w i l l provide the "expert system s h e l l " which may be 
effectively applied to the problems in spectroscopic analysis. 
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An E x p e r t System for Organ i c Structure D e t e r m i n a t i o n 

Bo Curry 
Chemical Systems Department, Hewlett-Packard Laboratories, Palo Alto, CA 94304-1209 

We are developing an expert system which interprets 
low-resolution mass spectra, infrared spectra, and 
other user-supplied information and produces a l i s t of 
functional groups present in an unknown organic com
pound. The input data are interpreted as evidence 
supporting the presence or absence of each of the over 
900 functional groups and organic substructures repre
sented in the knowledge base. This evidence is then 
combined by an "inference engine" to determine the 
probability that the group is present. Each type of 
input spectra is interpreted by a separate module, 
which has private internal data structures; these 
modules can use different techniques and even be 
written in different computer languages. The modular 
architecture was designed to allow new modules inter
preting different types of spectra to be easily in
corporated into the system. A major goal has been the 
reduction of the number of false positive assertions. 

An analyst attempting to identify an unknown compound from spectral 
data begins by searching l i b r a r i e s of spectra of known compounds 
(Figure 1). Programs which rapidly and r e l i a b l y search spectral 
l i b r a r i e s are widely available.(1-2) However, although these 
l i b r a r i e s continue to grow, i t w i l l remain true that the majority of 
compounds encountered i n real samples are not represented i n the 
l i b r a r i e s . These compounds can at present be i d e n t i f i e d only through 
a laborious manual process requiring considerable expertise. 

Interpretation of molecular spectra involves four basic steps. 
F i r s t , major skeletal and functional group components of the mole
cule are i d e n t i f i e d , either from assumptions about the compound 
or i g i n or from features of the spectra. Second, non-localized 
molecular properties such as the molecular weight, elemental compo
s i t i o n , and chromatographic behavior are considered. These global 
constraints can be used to eliminate unlikely functional groups, 
deduce the presence of groups and skeletal units which have no dis
t i n c t i v e features i n the spectra, and detect multiple occurrences of 

0097-6156/86/0306-0350$06.00/0 
© 1986 American Chemical Society 
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27. CURRY An Expert System for Organic Structure Determination 351 

functional groups. Complete candidate structures are then generated 
by assembling the functional groups subject to the global con
s t r a i n t s . More data may be collected to narrow down the number of 
candidates. F i n a l l y , the candidate structures are tested for compat
i b i l i t y with a l l o r i g i n a l data. Final confirmation i s obtained by 
synthesis of the candidate compound and comparison with the unknown. 

We are developing an expert system to automate the f i r s t step 
of t his process, the interpretation of molecular spectra and id e n t i 
f i c a t i o n of substructures present i n the molecule. The automatic 
interpretation of spectra would by i t s e l f provide a useful tool for 
an organic chemist who may not be an expert spectroscopist. Also, 
reported algorithms for the assembly of candidate structures from 
known substructures, such as the GENOA program.(3-6) rely on the 
input of accurate and specific substructures i n order to function 
correctly and e f f i c i e n t l y . I d e n t i f i c a t i o n of substructures i s thus a 
l o g i c a l starting point. 

Information about substructures present i n an unknown can be 
obtained from a wide variety of sources, and one of our major object
ives has been to allow a l l available data to be used by the program. 
Programs have been described i n the l i t e r a t u r e which interpret C-13 
and 1-H NMR spectra,(7-13) low and high-resolution mass spectra, 
(14-15) infrared spectra,(16-23) MS-MS spectra,(24) and 2D-NMR 
spectra.(25) The methods employed may be generally c l a s s i f i e d as 
rule-based methods or pattern-matching methods. Rule-based methods 
apply interpretation rules to discrete features of the spectra.(26) 
These rules are usually empirical correlations having physical sig
nificance , expressed i n a form similar to that used by human inter
preters. Rule-based systems maintain a r e l a t i v e l y detailed internal 
representation of their knowledge, and can explain their conclusions 
i n a language i n t e l l i g i b l e to the user. Pattern-matching methods 
attempt to c l a s s i f y the spectrum based on some global measure of 
"spectral distance" from spectra of known compounds.(27) Any physical 
knowledge used by the algorithm i s embodied i n i t s distance measure, 
which may be a complicated function of many features of the spectra. 
The c l a s s i f i c a t i o n decision i s made from a s t a t i s t i c a l analysis of 
the distance from representative members of the classes being dis
tinguished. Explanations of the system's conclusions are are usually 
limited to reporting the computed spectral distances. Whichever 
method i s employed, the output i s i n the form of a l i s t of suggested 
substructures, chosen from a predefined set, with confidence factors 
variously computed. 

The choice between rule-based and pattern-matching approaches 
depends not only on the predilection of the experimenters, but also 
on the nature of the data being interpreted. The reported NMR inter
preters a l l use rule-based methods. The pattern-matching algorithm 
used i n the STIRS program (14) appears to be the most successful at 
interpreting low-resolution mass spectra of general organic com
pounds. Both rule-based and pattern-matching techniques have been 
applied to the interpretation of infrared spectra. The rule-based 
methods seem to be the most successful.(16-23) We have therefore 
designed our program to allow each type of spectrum to be interpreted 
by the most e f f i c i e n t method; different methods can even be simul
taneously applied to the same spectrum. 

When the unknown i s present i n sub-microgram amounts, as i s 
often the case when i t has been isolated chromatographically, the 
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352 ARTIFICIAL INTELLIGENCE APPLICATIONS IN CHEMISTRY 

primary structural techniques are mass spectrometry, infrared spec
troscopy, and various methods of determining elemental composition. 
We have therefore concentrated our i n i t i a l efforts on interpreting 
these types of data, while recognizing the need to be able to use 
data from other sources, such as NMR, when they are available. A 
s k i l l e d chemist can often correctly identify an unknown of moderate 
size (molecular weight < 200) using only the IR spectrum, the low-
resolution mass spectrum, and some knowledge of the sample or i g i n . 
Even when a precise i d e n t i f i c a t i o n i s not possible, a generic class
i f i c a t i o n of the compound type i s useful and often s u f f i c i e n t . A 
program which interprets IR and mass spectra i s therefore a useful 
ana l y t i c a l tool i n i t s own right, and provides the basis for develop
ment of more comprehensive cap a b i l i t i e s i n the future. 

In our present system, infrared spectra are interpreted using a 
rule-based approach, while mass spectra are interpreted by the STIRS 
algorithm. The a b i l i l i t y to use different techniques for different 
types of data implies a modular architecture, i n which the "expert" 
responsible for the interpretation of each spectrum maintains i t s own 
rules and data structures (Figure 2). I t i s important, however, that 
the interpretation of the various spectra be mutually consistent. 
Information obtained from the mass spectrum, for example, should 
affect the way the infrared spectrum i s assigned. Conversely, the 
interpretation of mass spectral lines must be consistent with the 
presence of functional groups known to be present from other sources. 
This requires a means of communication among the parts of the program 
responsible for the interpretation of different types of data. Con
sistency also requires a means of combining evidence from different 
sources. When data from different sources contradict each other, the 
individual modules should be able to reinterpret their data so as to 
resolve the contradiction. 

As i n any c l a s s i f i c a t i o n problem, there i s a tradeoff between 
the rate of r e c a l l , or proportion of correct substructures detected, 
and the r e l i a b i l i t y , or avoidance of false positive assertions. I t 
i s rather the exception than the rule for an observation to have a 
single, unequivocal explanation. When reasonable alternative inter
pretations are possible, a decision must be made about what to 
report. At one extreme, a l l p o s s i b i l i t i e s could be asserted, ensur
ing 100% r e c a l l ( i . e . no substructure which i s actually present w i l l 
f a i l to be detected) at the cost of a high rate of false positives. 
At the other extreme, ambiguous data could be ignored, which guaran
tees no false positives, although many substructures which are 
present w i l l be missed. We have taken a middle road between these 
extremes by developing a measure of the "best" or most probable 
interpretation, taking into account a l l of the data available. When 
the best choice i s not clearcut, the disjunction of the competing 
alternatives i s e x p l i c i t l y asserted. The goal has been to minimize 
the rate of false positives, while reporting the most spec i f i c 
possible interpretation of the data. 

An important feature of expert systems i s the a c c e s s i b i l i t y to 
the user of the knowledge base and the reasoning process. Both the 
terminology used by the program and i t s interpretation of data have 
chemical significance. Each conclusion reached by the program can be 
traced by the user to the o r i g i n a l data. When alternative explana
tions for an observation are possible, the choice i s v i s i b l e to the 
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I d e n t i f y 
S u b u n i t s 

S p e c i f y 
G l o b a l 

C o n s t r a i n t s 

Figure 1. Flow chart for i d e n t i f i c a t i o n of an organic compound. 

MS 
J, ι ill. il., il 

MW rnQthyl-ketone 
1 4 8 monosubst-benzQnQ 

Figure 2. Schematic drawing of the interpreter. The program i s 
represented by the area inside the s o l i d rectangle. Program 
modules are drawn as c i r c l e s , and their associated databases as 
rectangles. A l l of the modules have read access to the Chemical 
Classes database. 
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user. I f the program has made an error, the user can correct i t , 
thereby modifying the o r i g i n a l conclusions. 

Program Description 

The architecture of our current system i s shown schematically i n 
Figure 2. The design i s modular, with a Controller module, a 
Reasoner module, a database of over 900 organic substructures, and a 
separate "Expert" module assigned to each kind of input data. The 
Controller module controls the progress of the calculation by con
sidering each of the substructuras which has not yet been eliminated, 
beginning with the most general. I t requests each of the Expert 
modules to supply i t with evidence supporting or denying the presence 
of the substructure currently being considered. This evidence i s 
collected and passed to the Reasoner. When no more evidence can be 
collected, the analysis i s finished. 

The Reasoner combines evidence from a l l sources and makes 
deductions from this evidence. The combination of evidence results 
i n a single "confidence l e v e l " for each substructure. These confi
dence levels designate the degree to which the evidence supports the 
presence of the substructure i n the unknown compound. They range 
from -100% (substructure d e f i n i t e l y absent), through 0% (no infor
mation) , to +100% (substructure d e f i n i t e l y present). The confidence 
levels are ultimately derived from s t a t i s t i c a l analysis of represent
ative spectral l i b r a r i e s . Details of the generation and propagation 
of confidence levels w i l l be described i n a separate report.(28) 

Each Expert module i s permitted to use any convenient method to 
carry out i t s mission of interpreting i t s assigned data. The Experts 
use private rules and data structures, and communicate with the 
Controller module both by suggesting the presence of substructures, 
and by evaluating the lik e l i h o o d of substructures under considera
tion. Each Expert can read the current confidence l e v e l associated 
with each substructure, and thus has access to information generated 
by other Experts or deduced by the Reasoner. 

Communication among these modules i s accomplished i n two ways. 
F i r s t , the chemical database, besides storing the chemical knowledge 
of the program, serves as a "blackboard" on which the progress of the 
computation i s recorded.(29) Only the Controller and Reasoner 
modules are allowed to write on the blackboard, but a l l modules can 
read i t . In this way the conclusions of each Expert module are 
available to a l l the others to guide their interpretation. Second, 
the Controller module controls the overall path of the analysis by 
sending messages to the individual Experts. The only requirement of 
a new Expert module being added to the system i s that i t be able to 
respond appropriately to these messages. 

The current prototype system includes three Expert modules, the 
IR Expert, the STIRS Expert, and the Human. A l l modules are written 
i n Lisp. The IR Expert i s a rule-based infrared interpreter which we 
have developed. The STIRS Expert i s an interface to the STIRS 
program, a pattern-matching mass spectrum interpreter developed by 
McLafferty and coworkers at Cornell University, which i s written i n 
Fortran.(14) The interface translates the output of STIRS into a form 
palatable to our program, and handles the message-passing protocol 
required by the Controller. The Human module controls communication 
with the user. I t allows user-supplied elemental or substructure 
information to influence the course of the analysis. The power of 
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27. CURRY An Expert System for Organic Structure Determination 355 

the modular approach i s shown by our a b i l i t y to integrate the results 
of three interpretation methods which d i f f e r profoundly i n their 
internal d e t a i l s . 

The Chemical Database. The chemical knowledge of the system i s em
bodied i n a database of over 900 organic substructures, arranged i n a 
hierarchy (Figure 3). With each of these substructures i s associated 
a connection table, s t a b i l i t y information, and a probability of oc
currence denoting how common the group i s . This information may be 
used by the Expert modules when deciding among possible interpreta
tions . 

As the analysis progresses, evidence i s accumulated supporting 
the presence or absence of defined substructures. The evidence i s 
combined by the Reasoner module to form a b e l i e f function, which 
describes the degree to which each substructure i s currently be
lieved. This information i s stored i n the chemical database, where 
i t i s available to the Expert modules and to the Controller as i t 
decides the course of the analysis. As the b e l i e f function evolves, 
the current state i s displayed graphically to the user, who may halt 
the analysis, query the current state, and redirect the course of the 
analysis by supplying evidence for or against a substructure. 

IR Expert Module. The IR Expert's rule base consists of over 1000 
correlations between observed infrared bands and vib r a t i o n a l modes of 
sp e c i f i c substructures. Associated with each rule i s a wavenumber 
range, an intensity range, and two confidence levels. Four intensity 
levels are allowed. The intensity levels are defined on an approxi
mate semilog scale, r e l a t i v e to the most intense peak i n the spec
trum: WEAK - 2 - 5%, MEDIUM - 5 - 15%, STRONG - 15 - 40%, VSTRONG -
40 - 100%. The program does not attempt to assign bands weaker than 
2% of the strongest band. Each IR rule i s equivalent to the pair of 
propositions : 

a) IF a band of intensity I appears i n the region x l - x2 cm-1, 
THEN i t i s due to the vibrational mode M of substructure S, AND 

b) IF no band of intensity I appears i n the region x l - x2 cm-1, 
THEN the substructure S i s not present i n the unknown. 

About 800 of these rules were chosen by testing a l l the IR cor
relations we could f i n d i n the literature,(30-32) mostly for con
densed phases, against the EPA gas-phase l i b r a r y of 2300 compounds. 
(33-34) About 30% of the l i t e r a t u r e correlations were not generally 
s a t i s f i e d by the l i b r a r y spectra, and were discarded. Another 200 
rules were discovered by searching for patterns i n compound classes 
i n the l i b r a r y which could reasonably be attributed to expected vib
ra t i o n a l modes of those classes. S t a t i s t i c s were generated for the 
probability that each of the IR rules would be s a t i s f i e d for com
pounds which contained, or did not contain, the substructure speci
f i e d by the rule. These s t a t i s t i c s were used to compute two confi
dence levels for each rule, corresponding to the confidence i n the 
two propositions a) and b) implied by the rule. 

Messages. As noted above, the expert modules communicate their 
results to the user and to the Controller by responding to messages 
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sent by the Controller. There are s i x messages to which each Expert 
module i s required to respond: 

The ALIVE? message asks the Expert i f i t i s available for con
sultation i n this analysis. The receiving Expert resets i t s internal 
state, and responds TRUE i f i t has data, FALSE i f i t doesn't. 

The SUGGESTIONS message asks the Expert to report any substruc
tures i t believes, on i t s own, to be present or absent. The report 
takes the form of a l i s t of items of evidence, each supporting the 
presence or absence of a particular chemical group. 

The SPECIALIZE message asserts the hypothetical presence of a 
chemical group, and asks the Expert which subgroups may be present. 
For example, the message "SPECIALIZE carbonyl" would cause the re
ceiving Expert to return evidence for or against the presence of 
ketone, aldehyde, ester, amide, and other spec i f i c types of carbonyl, 
under the assumption (for the moment) that the compound does i n fact 
contain a carbonyl group. 

The TEST message asks the Expert to return any evidence i t may 
have against the presence of the group being tested. 

The REEVALUATE message i s sent when a piece of evidence sup
p l i e d by an Expert has been contradicted. I t asks the Expert to 
modify or retract the evidence, i f possible. Many infrared correla
tions have known exceptions i n specific cases. For example, a n i t r o 
group on a benzene ring raises the expected frequency ranges of the 
hydrogen wags. I f the presence of a n i t r o group i s known or suspec
ted, the aromatic wag assignments must be reevaluated. 

The EXPOUND message asks the Expert to print out, for the user's 
benefit, the reasons supporting a piece of evidence. Each piece of 
evidence originated i n i t i a l l y i n some feature of the data. The 
degree of d e t a i l supplied i n response to this message depends on the 
individual Expert. The IR Expert, for example, can report the i n f r a 
red bands which were assigned to a particular vibrational mode of a 
substructure, as well as possible alternative assignments. The STIRS 
Expert reports the incidence of the substructure among the best h i t s 
i n different STIRS data classes. 

Example : 4-phenyl-2-butanone 

The results of the interpretation of the gas phase IR and low-resolu
tion mass spectra of 4-phenyl-2-butanone are given i n Figure 4. This 
compound, with a molecular weight of 148, i s ty p i c a l of the size and 
complexity of compounds which our program handles well. The IR spec
trum was taken from the EPA gas-phase IR l i b r a r y , and the mass spec
trum from the Registry of Mass Spectral Data.(35) 

The program was run three times: f i r s t with only the STIRS 
results, second with only the results of the IR interpretation, and 
f i n a l l y with both spectra together. A l l functional groups reported 
by the program with confidence levels > 10% are l i s t e d . In addition, 
STIRS correctly determined the molecular weight. 

The most spec i f i c defined functional groups actually present i n 
the unknown are benzyl, monosubstituted-benzene, X-CH2CH2-X (where 
the "X" represents any group other than -H or -CH2-), and methyl-
ketone. That i s , the program would have achieved a perfect score had 
i t reported these substructures and no others. In fact, the program 
was unable to determine the correct environments of the ketone and 
-CH2- groups, although i t reported only one incorrect substructure. 
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27. CURRY An Expert System for Organic Structure Determination 357 

These results are consistent with our goal of reducing the rate of 
false positives, at the cost of f a i l i n g to report the most spe c i f i c 
possible substructures which are actually present. I f the low-confi
dence report of the presence of benzyl and X-C-CH3 groups i s accepted 
(Figure 4), the reported results suffice to uniquely determine the 
complete structure. 

The effects of the low-level combination of evidence are i l l u s 
trated by two features of the output. F i r s t , the confidence l e v e l 
for the ketone group increases from 19% for the IR-only interpreta
ti o n to 30% for the combined interpretation, despite the fact that 
STIRS had nothing to say about the presence of a ketone or even of a 
carbonyl. This i s explained by the increased confidence i n monosub-
stituted-benzene derived from the combined spectra, which causes a 
fingerprint l i n e tentatively assigned to an ester C-0 stretch to be 
reassigned to a phenyl vibration. Reducing the l i k e l i h o o d of an 
ester group increases the likelihood that the C-O stretch i s due to a 
ketone group. Secondly, the contradiction between STIRS' assertion 
of methyl-benzene and the IR denial not only reduces the b e l i e f i n 
methyl-benzene, but also allows the assertion of benzyl and unsatur
ated- CH3 (X-C-CH3). These substructures were not suggested by either 
spectrum taken alone. 

A s l i g h t l y abridged explanation offered by the program for i t s 
b e l i e f i n methyl-benzene i s shown i n Figure 5. There i s both posi
tive and negative evidence. The positive evidence comes primarily 
from STIRS, and the negative evidence results from the f a i l u r e to 
observe a medium intensity C-H stretching band expected for methyl-
benzene. A small amount of positive support for methyl-benzene i s 
also supplied by the IR Expert, showing that c o n f l i c t s can occur 
between different features of a single spectrum. The degree to which 
each piece of evidence i s i n c o n f l i c t with other evidence i s noted. 
The explanation f a c i l i t y traces the f i n a l b e l i e f back to primitive 
pieces of evidence supplied by the Expert modules. The Experts are 
then responsible for explaining how the evidence depends on the ob
served spectrum. STIRS i s unable to do more than report which of i t s 
data classes supported the substructure and with what probability. 
The IR Expert module, on the other hand, can give a r i c h l y detailed 
description of the assignment of the spectrum. 

Results 

We have evaluated our prototype system at several levels. Each Ex
pert module has been tested individually. Detailed results of tests 
of the STIRS program have been published by McLafferty et al.(36) 
The IR Expert module was tested extensively against the EPA l i b r a r y . 

The effects of competition among the IR rules were explored by 
using the complete system, with the STIRS module disabled, to inter
pret the spectra of 1807 compounds from the l i b r a r y . For the test, 
we selected 500 of the 900 chemical substructures which both are 
chemically interesting and display at least one d i s t i n c t i v e infrared 
band. Some of the selected substructures were subsets of others: for 
example, alcohol, phenol, and primary alcohol were a l l i n the test 
set. As expected, some functional groups displaying very d i s t i n c t i v e 
infrared bands were detected much more r e l i a b l y than others. Figure 6 
shows the r e l i a b i l i t y , false positive and r e c a l l rates for a few 
selected functional groups. 
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900 d e f i n e d s u b s t r u c t u r e s 

Figure 3. A subset of the chemical substructures database, 
showing the hierarchical ordering. 

ο 
^ ^ C H 2 C H 2 C C H 3 

C l a s s MS Only IR Only MS 8, IR 

© χ 8 0 % 6 9 % 9 9 % 

95 95 
• 

CCC 19 30 

-CH 2- 65 65 

-CH 3 98 56 98 

69 -44 25 

O r 14 

X=C-CH 3 37 

Figure 4. Substructures reported for 4-phenyl-2-butanone at > 10% 
confidence, for three runs of the interpreter using different 
data sets. 
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Why wQthyl-bQnzQno? 

36% POSITIVE: 

41% from STIRS ( c o n f l i c t 27%) 
8% from IR band at 2933 cm-1 

assuming unsaturatQcJ-C-CH3 (37%) 
( c o n f l i c t 27%) 

11% NEGATIVE: 

23% bQcausQ of f a i l u r e to s a t i s f y 
C-Hsym-mQthy 1 -benzQne-1 
IR band 2860-2883 m 
( c o n f l i c t 45%) 

Figure 5. Sample of the explanations provided by the program f o r 
i t s conclusions. More d e t a i l about the source of the reported 
c o n f l i c t , the assignments of IR bands, or the data c l a s s e s 
responsible f o r the STIRS evidence can al s o be provided. 

IR r e s u l t s f o r 1807 compounds 
R e l i a b i 1 i t y 

F a l s e p o s i t i v e s 
IXXXXI 
Recal1 

> 45% confidence 

Figure 6. S t a t i s t i c s for 5 selected substructures of the 500 
tested on the EPA IR database. Values of the R e l i a b i l i t y , False 
Positives, and Recall (see text) are compared at the 45% 
confidence l e v e l . The number of compounds i n the database 
containing each substructure i s given beneath the substructure 
name. Note the expanded scale used to plot the False Positive 
measure. 
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The " r e c a l l " i s the probability that a substructure present i n 
the unknown w i l l be reported, while the " r e l i a b i l i t y " i s the proba
b i l i t y that a reported substructure i s actually present.(36) These 
functions are defined as: 

Recall(S) - Number_correctly_reported(S) / Total_number_present(S) 

R e l i a b i l i t y ( S ) » Number_falsely_reported(S) / Total_number_reported(S) 

for a l l compounds i n the database containing substructure S. Both 
measures are functions of the confidence l e v e l (CL) threshold above 
which we count a substructure as "reported". A l l substructures are 
reported at CL > -100%, while none are reported at CL > +100%. We 
have a r b i t r a r i l y chosen CL > 45% as a threshold i n Figure 6. 

An alternative measure of r e l i a b i l i t y often used i s the "false 
positive" rate, defined as: 

FP(S) - Number_falsely_reported(S) / Total_number_present(NOT S) , 

which i s related to the r e c a l l and r e l i a b i l i t y measures by: 

Total_number_present(S) * Recall * R e l i a b i l i t y 
FP(S) -

Total_number_present(NOT S) * (1 - R e l i a b i l i t y ) 
This i s the probability that a compound which does not contain sub
structure S w i l l be incorrectly reported to contain i t . For sub
structures which occur rarely i n the database, the (1 - FP) rate w i l l 
be considerably greater than the r e l i a b i l i t y , and may be misleading. 
For example, for the S02 group (1% of the database), the FP rate was 
< 8%, although the r e l i a b i l i t y was only 25% (Figure 6). That i s , 
although the program f a l s e l y asserted the presence of an S02 group 
(with > 45% CL) only 8% of the time, 3/4 of the assertions of S02 
were incorrect. The l a t t e r s t a t i s t i c i s probably of more interest to 
an analyst trying to evaluate the program's reports. On the other 
hand, the FP i s a better measure of the raw discriminating power of 
the program, since i t would presumably be unchanged by changing the 
proportion of the target substructure i n the database. The two meas
ures serve different functions, and should both be reported. 

The tradeoff between r e l i a b i l i t y and r e c a l l can be adjusted for 
individual functional groups by changing the frequency ranges allowed 
for the IR correlations. For some of the functional groups which are 
well represented i n the EPA l i b r a r y (e.g. esters, alcohols) we have 
manually optimized the rule ranges to maximize ( 3 * R e l i a b i l i t y + 
Recall). Since the l i b r a r y i s known to contain errors, and i s skewed 
towards the smallest (often anomalous) members of homologous series, 
we have not t r i e d to do this for a l l groups (e.g. S02). Further 
testing on larger l i b r a r i e s w i l l allow further refinements of the IR 
rules. 

Many of the errors observed result from the consistent confusion 
of two particular functional groups. For example, although the pres
ence of a methyl group was erroneously reported (at >45% confidence) 
for 30% of the 400 compounds which lack methyl groups, a methyl group 
was reported for only 1 of the 33 compounds lacking both CH3 and CH2 
groups. Conversely, the presence of a methylene group was never i n -
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correctly asserted for compounds which lack methyl groups. Examina
tio n of the reasons for the confusion confirm that the C-H stretching 
and HCH deformation vibrations, whose frequency and intensity ranges 
are similar for methyl and methylene, are often misassigned. Such 
consistent confusion between similar substructures can be dealt with 
by assigning the bands to a generic -CH2X group, and deciding between 
methyl and methylene only after the nearby environment has been 
determined. 

Average results for 500 IR-active substructures are shown i n 
Figure 7 at four different confidence levels. The average compound 
i n the database contains 8.1 of the 500 substructures. At a confi
dence l e v e l of > 45%, only 1.4 (of 492) incorrect substructures are 
reported, while 4.6 of 8.1 substructures actually present are repor
ted. In other words, a "t y p i c a l " analysis w i l l report 6.0 substruc
tures at > 45% confidence, of which 4.6 are correct. 3.5 substruc
tures actually present i n the compound w i l l f a i l to be reported. In 
an actual analysis, infrared data i s combined with other types of 
data, so that many of the substructures undetected by infrared would 
be found by other techniques. 

We have analyzed over 100 unknown compounds using both the mass 
spectrum and the IR spectrum i n combination. The combination of the 
two techniques gives substantially better results than does either 
technique alone. As expected, many functional groups are preferen
t i a l l y detected by one technique or the other. For example, ketone 
groups are rarely detected i n the mass spectrum, but are usually cor
r e c t l y interpreted from the infrared. Chlorine and bromine, on the 
other hand, are easily detected i n the mass spectrum but often missed 
by the infrared interpreter. Also, because of the interaction be
tween the two interpretation methods, substructures are frequently 
detected by the combined techniques which are not found by either 
technique alone. This can occur as a result of resolving a contra
d i c t i o n between the two Experts, as i n the example above, or because 
one Expert i s able to further specialize a result suggested by the 
other. For example, i n the interpretation of bis-2-chloro-ethyl-
ether, the IR Expert alone f a i l s to detect the presence of chlorine. 
When chlorine i s suggested by the STIRS Expert, however, the IR 
Expert correctly reports the -CH2C1 group. A few substructures, such 
as non-terminal o l e f i n s , are not r e l i a b l y detected i n either mass or 
infrared spectra. For such groups, other techniques (NMR, UV absorp
tion, Raman) are necessary. 

In many cases, the results of the IR and mass spectrum inter
pretation are s u f f i c i e n t to allow a complete molecular structure to 
be deduced. In preliminary tests on 12 unknown compounds of molecu
l a r weight 100-200, the author, using the results reported by the 
program but without access to the or i g i n a l spectra, was able to 
correctly identify 9 of the unknowns. 

These results are encouraging, and suggest that our system i n 
substantially i t s present form could serve as a useful tool for an 
anal y t i c a l chemist, as well as eventually providing a framework for 
completely automated i d e n t i f i c a t i o n of organic compounds. 
Conclusions 

We have developed an expert system which can interpret various kinds 
of data and report functional groups present i n an unknown organic 
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Avorago C o r r e c t and I n c o r r o c t 
A s s o r t i o n s f o r 1807 Compounds 

ο 0 Infrared Only 

Confidence Level (%) 

Figure 7. Average number of substructures reported correctly 
( s o l i d color) and incorrectly (hatched) at four different 
confidence levels, for IR data only. A t o t a l of 500 
substructures were considered, of which an average of 8.1 were 
present i n each compound.  P
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compound. The program employs a modular construction, which allows 
each type of data to be interpreted i n the most e f f i c i e n t way. The 
conclusions derived by different modules are able to influence each 
other at a low l e v e l . 

The program knows the chemical relationships between functional 
groups, and can use this knowledge i n i t s reasoning process. 

The reasoning process i s accessible to the user, so that each 
conclusion can be traced back to the o r i g i n a l data responsible for 
i t . Choices made by the program can be isolated and overridden by 
a knowledgeable user. 

Contradictions aris i n g among evidence from different sources 
are resolved i n a natural way, using knowledge about the effects of 
perturbations and common interferences on the spectra. 

A rule-based infrared spectra interpreter has been developed as 
a major module of the program. This module has been tested as a 
stand-alone system, and i n conjunction with STIRS. The low rate of 
false positive assertions i s encouraging, and work continues to 
reduce this rate s t i l l further by incremental refinement of the 
knowledge base. 

In i t s present form, our system can provide s i g n i f i c a n t assist
ance to a chemist trying to identify an unknown organic compound. 
Research i s i n progress to extend the c a p a b i l i t i e s of the program 
both by expanding the number of different data sources i t can handle 
(NMR, UV/visible absorption spectra) and by incorporating a "molecule 
builder" which assembles complete candidate structures, where pos
s i b l e , from the suggested substructures. 
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Concerted O r g a n i c A n a l y s i s of Mat e r i a l s and 
Expert-System Development 

S. A. Liebman1, P. J. Duff1, M. A. Schroeder1, R. A. Fifer1, and A. M. Harper2 

1U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD 21005-5066 
2Chemistry Department, University of Texas at El Paso, El Paso, TX 79968-0513 

A prototype multilevel expert system network 
has been developed for application to materials 
characterization. Selected analytical 
instruments generate databases which are 
treated and interpreted within an analytical 
strategy toward a desired goal. Using a 
commercial expert system shell, TIMM, a linked 
network of expert systems, EXMAT, has been 
developed. The expertise of a chemometrician 
is embedded within the network at the data 
analysis and interpretation stages as a linked 
expert system, EXMATH. For general chemical 
analysis, expert systems capable of symbolic 
and numeric processing appear necessary to 
provide integrated decision structures using 
data generated from appropriate instruments and 
sensors. Final implementation of EXMAT will 
demonstrate the potential significance of 
artificial intelligence (AI) in analytical 
chemistry with varied intelligent laboratory 
and process instrumentation. 

Requirements for high-performance materials have focused on the 
a b i l i t y to relate structure/composition to end-use behavior. 
Analytical instrumentation designed over the past decade has made 
impressive advances in defining the composition of complex 
polymeric systems, including detailed description of polymer 
chemical microstructure. Concerted organic analysis has been 
followed since the early '70s (1-3), including multivariate 
p r o f i l e analysis of gas chromatographic (GC) patterns (Α), and 
computer simulations of GC/spectral patterns to aid interpretation 
(_5_). Work reported in 1968 (6,7) included automated data 
acquisition and computer-aided interpretation from multiple 
analytical spectrometers (mass, nuclear magnetic resonance (NMR), 
infrared (IR), and ul t r a v i o l e t (UV)). The four spectrometers were 
tied to individual computers which fed data into a central 

0097-6156/86/0306-0365$06.00/0 
© 1986 American Chemical Society 
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computer programmed for structure elucidation based on a 
combination of a l l four types of data. Most recently, 
applications of computer models that describe relationships 
between chemical, physical, and mechanical responses were 
described by Kaelble (8). Many correlations between chemical 
structure and polymer composite performance have been established 
over the past decade within the industrial R&D community. 
Kaelble 1s work emphasizes the significance of modern 
characterization methods for this purpose. 

Concurrently, pattern recognition programs were developed as 
interpretive aids along with comprehensive experimental design, 
factor analysis, and other s t a t i s t i c a l approaches within the 
chemometrics f i e l d (9-15). Only within the past few years has the 
precision and high reproducibility of appropriate key 
instrumentation made possible r e a l i s t i c applications for materials 
analysis. Microprocessor-based chromatographic, pyrolysis/ 
concentrator, thermal, and spectral instrumentation are combined 
with chemometric tools to provide chemically significant 
information as " i n t e l l i g e n t 1 1 instruments become available (16). 
These advances are a l l i e d to highly automated hardware common in 
c l i n i c a l labs and computer-controlled process equipment (17-19). 

Automated calibration and data-handling methods have been 
integral parts of commercial analytical systems for many years, as 
well as embedded software to automate complex pneumatic/electronic 
sequences in concentrator and chemical reactor instrumentation 
using on-line GC analysis (20). Recently, a commercial high 
pressure l i q u i d chromatograph (HPLC) system (21) demonstrated 
adaptive intelligence to optimize separations for complex sample 
mixtures. The optimization program, OPTIM I I , i n i t i a l l y queries 
the chromatographer and then performs a sequence of automated 
steps. Likewise, lib r a r y search algorithms (22-28), pattern 
recognition (29-36), and optimization (37-42) methods have 
developed in numerous laboratories. 

The well-known DENDRAL and META-DENDRAL programs (43) are 
noted as the major AI success in chemical applications over the 
past decade. However, advances in analytical technology and 
computer capabilities have led to new approaches (44-56). 
Information fusion from selected instrumental tools often is a 
more productive route than exhaustive data analysis from a single 
source. Furthermore, combination of chromatographic separation 
with spectral, thermal, and microchemical analyses can be 
r e a l i s t i c a l l y achieved in many laboratories. Generalizing and 
documenting this trend using an AI approach seemed appropriate at 
this time. 

Results and Discussion 

General. We have studied the characterization of multicomponent 
materials by combining modern analytical instrumentation with a 
commercially available AI expert system development tool. 
Information generated from selected analytical databases may be 
accessed using TIMM, ("The Intelligent Machine Model,") available 
from General Research Corp., McLean, VA. This Fortran expert 
system shell has enabled development of EXMAT, a h e u r i s t i c a l l y -
1inked network of expert systems for materials analysis. 
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28. L I E B M A N E T A L . Concerted Organic Analysis of Materials 367 

An important aspect of our AI application is the attention 
paid to including well-established Fortran programs and database 
search methods into the decision structure of an expert system 
network. Only certain AI software tools (such as TIMM) 
effectively handle this c r i t i c a l aspect for the analytical 
instrumentation f i e l d at this time (57-60). The a b i l i t y to 
combine symbolic and numeric processing appears to be a major 
factor in development of multilevel expert systems for practical 
instrumentation use. Therefore, the expert systems in the EXMAT 
linked network access factor values and the decisions from EXMATH, 
an expert system with chemometric/Fortran routines which are 
appropriate to the nature of the instrumental data and the 
information needed by the analyst. Pattern recognition and 
correlation methods are basic capabilities in this f i e l d . 

TIMM - The Intelligent Machine Model. The expert system s h e l l , 
TIMM, is a frame-like system which employs an analogical p a r t i a l 
match inferencing procedure, similar to a forward-chaining proces c 

when the e x p l i c i t linking method is followed. P a r t i a l match 
inferencing, as proposed by Hayes-Roth and Joshi (61) means 
matching on a subset of clauses in individual rules. Analogical 
inferencing uses s i m i l a r i t y , as well as exactitude, to match rule 
clauses. Thus, TIMM effectively uses incomplete and approximate 
knowledge in a supervised learning format. The created expert 
system is divided into two sections: (1) a decision structure 
with ordered input factors and values, and (2) the knowledge base 
containing rules that are displayed to the user in an " i f , then" 
format. A set of test conditions is compared to those contained 
in the knowledge base and a weighted s i m i l a r i t y metric i s 
applied. A variation of the nearest neighbor search algorithm i s 
used for pattern-matching. 

Heuristically-linked individual expert systems (ES) are 
prepared using imp l i c i t and/or e x p l i c i t linking methods to permit 
processing of "microdecisions" that are part of more complex 
"macrodecisions". The prototype EXMAT was developed using an 
imp l i c i t linking procedure wherein the decision choices of one ES 
become the f i r s t ordered factor/values of another ES. Prior to 
li n k i n g , each system is independently b u i l t , trained, exercised, 
checked for consistancy and completeness, and then generalized. 
Terse or verbose explanations may be included, as well as decision 
confidence levels that are trained into the system by the domain 
experts. TIMM is domain independent, permitting expert systems to 
be readily developed in fields wherein expertise exists. EXMAT 
was developed within this protocol with the important advantage 
that TIMM ES can be embedded in routines which are basic to the 
analysts 1 problem-solving capability and accessed using the 
advanced REASON subroutine developed by General Research 
Corporation. 

EXMAT - A Linked Network of Expert Systems for Materials Analysis. 
Seven individual expert systems comprise EXMAT: (1) problem 
de f i n i t i o n and analytical strategy; (2) instrumental configuration 
and conditions; (3) data generation; (4) chemometric/search 
algorithms; (5) results; (6) interpretation; (7) analytical goals. 
Dynamic headspace (DHS)/GC and pyrolysis GC (PGC)/concentrators 
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368 ARTIFICIAL INTELLIGENCE APPLICATIONS IN CHEMISTRY 

interfaced to Fourier transform infrared (FTIR) and mass spectral 
(MS) detectors, combined with HPLC, thermal, and elemental 
analyses have been chosen in this approach for composite materials 
characterization. Generation of databases in the prototype EXMAT 
system w i l l focus on the specific domain of propellants and 
polymer composites. However, the general concept of integrating 
information from relevant databases emulates the actions of a 
pragmatic problem-solver in many domains. Clearly, the specific 
analytical strategy, instrumental configurations, databases, and 
interpretive aids must be developed accordingly (8_). EXMAT 
i l l u s t r a t e s the inherent potential of combining i n t e l l i g e n t 
instrumentation with AI symbolic processing in a problem-solving 
format. 

Figure la outlines the decision and control structure of 
TIMM; Figure l b , the expert systems network; and Figure l c , the 
overall decision structure of EXMAT. Expert System (ES) #1 i s 
given (in part) in Figure 2 showing the decision choices and 
factors/values needed to establish the problem def i n i t i o n and 
analytical strategy. Analytical systems included in the strategy 
s p e c i f i c a l l y emphasize those tools available in the B a l l i s t i c 
Research Laboratory and which have a proven capability of 
generating precise, reproducible data on a wide variety of 
materials. Therefore, the analyst may select the combination of 
instrumentation (chromatographic, spectrometric, thermal, or 
elemental) dependent on the scope of the problem, nature of the 
information needed, details of the samples involved, and the 
available analytical tools and methods. There are approximately 
85 rules in the knowledge base of ES #1 at this time, four of 
which are shown in Figure 3. 

Figure 4 outlines a portion of ES #2 for choice of the 
specific instrumental configuration and conditions which are 
indicated by the decisions and factors provided in ES#1. This is 
a c r i t i c a l step, since the databases generated i n ES #3 must be 
d i r e c t l y correlated to the specific instrumental configuration and 
conditions in ES #2 for the concerted analysis of samples, 
references, etc.; e.g., pattern comparisons between analyses with 
specialty GC detectors (FID-flame ionization, TCD-thermal 
conductivity, NPD-nitrogen/phosphorus, PID-photoionization). This 
stage focuses on the attributes of modern analytical 
instrumentation: f l e x i b l e , modular, microprocessor/computer-
controlled hardware that can be readily interfaced for e f f i c i e n t 
data-acquisition and handling. ES #2 also emphasizes varied 
sample processing, such as pyrolysis and dynamic headspace, in 
order to analyze materials which cannot be introduced d i r e c t l y 
into the chromatographic or spectral systems. Also, instrumental 
methods designed for trace organic analysis or for sample-limited 
studies are important ca p a b i l i t i e s . The instrumental 
configurations are grouped into six major systems - Sys 1-GC, Sys 
2-FTIR, Sys 3-MS, Sys 4-HPLC, Sys 5-Thermal, and Sys 6-Elemental. 

ES #3 dictates the selected databases and sample-tracking 
mechanism that are based on the decisions of ES #2. For example, 
data obtained using a direct FTIR method as suggested in the 
decisions of ES #1 and #2 would be put into the FTIR database 
under D conditions. However, a sample examined with the GC-FTIR 
configuration would be entered into the GC-FTIR database with 
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Ι Τ Ι Μ Μ E X P E R T S Y S T E M B U I L D ER J 

| U S E R A P P L I C A T I O N S Y S T E M | 

Figure l a . Expert system shell - TIMM. 
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EXMAT 

ESTABLISH FRAMEWORK FOP INTEGRATING ES 
DECISIONS AND ACTIONS TO-BE-TAKEN 

REASON 

A SUBPROGRAM PRODUCED BY GRC 
ENABLES 

(A) APPLICATION TO CALL ES 
AS A LINKED SUBROUTINE 

(B) AN ES TO CALL AND UTILIZE DATA 
FROM OTHER FILES/PROGRAMS 

(C) TIMM ES TO PASS A DECISION TO 

AN ACTION-TO-BE-TAKEN COMPONENT 

OF THE PROGRAM 

Ο EXMATH 

CALLS USER DEFINED DATA FILE 
FOR CHEMOMETRICS 

DECISION INVOKES MATH SUBROUTINE AND 
ACCEPTS EXMAT DECISIONS 

CONVERTS MATH RESULTS TO FACTOR VALUES 
FOR INPUT TO TIMM EXPERT SYSTEMS 

Figure lb. An expert system network. 
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28. L I E B M A N E T A L . Concerted Organic Analysis of Materials 371 

A LINKED NETWORK OF EXPERT SYSTEMS FOR MATERIAL ANALYSIS 

ES #1 ANALYTICAL STRATEGY FOR DEFINED PROBLEM 

ES #2 INSTRUMENTAL CONFIGURATION/CONDITIONS 

ES #3 DATABASE GENERATION 

ES #4 DATA TREATMENT 

ES #5 DATA RESULTS 

ES #6 DATA INTERPRETATION 

ES #7 ANALYTICAL GOAL 

Figure l c . Development of EXMAT. 
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D E C I S I O N : 

ANALY STRATEGY 
Choices: 
GC/SYS1 
FTIR/SYS2 
MS/SYS3 
LC/SYS4 
TA/SYS5 
EL/SYS6 

FACTORS: 

SCOPE 
Type of Values: Unordered Descriptive Phrases 
Values: 
SCREEN 
TIME/FUND LIMIT 
QUAL/QUANT 
QUANT 
PURITY 
VOLATILES 
TRACE DETECT 
KINETICS 
MECHANISM 
CORRELATION 
R&D 

SAMPLE AMT 
Type of Values: Linearly-Ordered Descriptive Phrases 
Values: 
UNLIMITED 
GM 
MG 
MICROGM 
TRACE 

SAMPLE FORM 
Type of Values: Unordered Descriptive Phrases 
Values: 
POWDER 
BULK 
SEMISOLID 
LIQUID 
FILM/LAMIΝ 
FIBER 
MULTIMEDIA 

Figure 2. P a r t i a l decision structure of ES #1 analytical 
strategy. 
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Rule 17 

If: 
SCOPE 
SAMPLE AMT 
SAMPLE FORM 

IS SCREEN 
IS GM 
IS MULTIMEDIA 

SAMPLING PROCESS IS RANDOM 
SAMPLE HISTORY 
INSTR. AVAIL 

Then: 
ANALY STRATEGY 

IS UNKWN 
IS NO LC 

IS GC/SYS1(50) 
FTIR/SYS2Î5Û) 

Rule 18 

I-f : 
SCOPE 
SAMPLE AMT 
SAMPLE FORM 

IS TRACE DETECT 
IS MG 
IS POWDER 

SAMPLING PROCESS IS STATIC 
SAMPLE HISTORY 
INSTR. AVAIL 

Then: 
ANALY STRATEGY 

IS DEGRADATION 
IS NO LC 
IS GC/SYS1(30) 

MS/SYS3(70) 

Rule 19 

If: 
SCOPE 
SAMPLE AMT 
SAMPLE FORM 

IS QUANT 
IS TRACE 
IS FILM/LAMIΝ 

SAMPLING PROCESS IS STATIC 
SAMPLE HISTORY 
INSTR. AVAIL 

Then: 
ANALY STRATEGY 

IS UNKWN 
IS NO METHOD 
IS MS/SYS3(100) 

Rule 20 

If: 
SCOPE 
SAMPLE AMT 
SAMPLE FORM 

IS TRACE DETECT 
IS TRACE 
IS FILM/LAMIN 

SAMPLING PROCESS IS RANDOM 
SAMPLE HISTORY 
INSTR. AVAIL 

Then : 
ANALY STRATEGY 

IS DEGRADATION 
IS NO ELEM 
IS GC/SYS1(20) 

MS/SYS3(80) 

Figure 3. Typical rules in ES #1. 
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DECISIONS 

EXPTL CONFIG 
Choices: 
GCSYS1/A 
GCSYS1/AEC 
FTIRSYS2/D 
FTIRSYS2/ABCD 
MSSYS3/E 
MSSYS3/ABCE 
LCSYS4/FIK 
LCSYS4/GJK 
LCSYS4/FIL 
LCSYS4/GJL 
TASYS5/M 
TASYS5/N 
TASYS5/0 
TASYS5/P 
ELSYS6/Q 
ELSYS6/R 

FACTORS: 
ANALY STRATEGY 

Type of Values: Unordered Descriptive Phrases 
Values: 

GC/SYS1 
FTIR/SYS2 
MS/SYS3 
LC/SYS4 
TA/SYS5 
EL/SYS6 

GC CONFIG 
Type of Values: Unordered Descriptive Phrases 
Values: 

DIRECT GC/FID/TCD 
DIRECT GC/FID/NPD 
DHS/FID/TCD 
DHS/FID/NPD 
PGC/FID/TCD 
PGC/FID/NPD 
DHS/PGC/FID/TCD 
DHS/PGC/FID/NPD 

FTIR CONFIG 
Type of Values: Unondered Descriptive Phrases 
Values: 

DIRECT 
MICROSAMPLING 
DRIFT 
ATR 
VARIABLE Τ 
DHS/FTIR 
GC-FTIR 
DHS/GC-FTIR 
PGC-FTIR 
DHS/PGC-FTIR 

MS CONFIG 
Type of Values: Unordered Descriptive Phrases 
Values: 

RIC 
SIM 
PYROL/MS 
DUG/MS 
GC-MS/P1D 

Figure 4. P a r t i a l decision structure of ES #2 configuration. 
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conditions designated AD, ABD, or ABCD. In the f u l l y documented 
ES form, the conditions A/B/C/etc. w i l l be described i n 
appropriate detail for the user and accessed by using the "verbose 
version" from the menu. Format for instrumental database 
generation and management was aided by the work reported e a r l i e r 
by R. Crawford, C. Wong, and coworkers at Lawrence Livermore 
Laboratory (62,63). Additionally, data report transfer from GC 
data stations to the host VAX-VMS system was aided by recent work 
reported from Argonne National Laboratory (64,65). 

Data treatment in ES #4 incorporates chemometric methods 
available for chromatographic or spectral analysis: preprocessing 
of data, normalization, smoothing, deconvolution, optimization, 
fingerprinting, pattern recognition, factor analysis (eigenvector 
and canonical methods), and other appropriate routines. The 
lat t e r have been purchased or incorporated from the l i t e r a t u r e ; 
e.g., PAIRS, an infrared interpretive program by H. Woodruff and 
coworkers (66), and the MS library/search programs provided by 
Hewlett-Packard for their MS systems. These searches provide a 
"hi t l i s t " from the respective l i b r a r i e s and some additional 
options for spectral interpretation. 

Our linked pattern recognition expert system, EXMATH, 
operates on given databases via the preprocessing, data 
manipulation, c l a s s i f i c a t i o n , factor analysis, or plotting 
packages as driven within EXMAT. For example, the c l a s s i f i c a t i o n 
package includes linear discriminant analysis, regression 
analysis, principal component catagory analysis, nonlinear mapping 
and nearest neighbors analysis. The factor analysis package 
provides loading extraction, factor scores, factor rotations, and 
canonical correlation analysis. 

The results of data treatment are documented and evaluated in 
ES #5 and the interpretation in ES #6 is guided by the analyst's 
constraints and requirements. For instance, simple visual pattern 
comparisions may be acceptable for sample i d e n t i f i c a t i o n , or a 
combined database (GC-FTIR/GC-MS), (PGC/FTIR), (GC/TA), etc., 
analysis may be required. Judgmental decisions must be trained 
into the system as to depth of analysis, i t s acceptability and 
r e l i a b i l i t y (e.g., the h i t quality index (HQI) of the MS search 
combined with that from the FTIR search may confirm within a 95% 
confidence level the GC peak or sample identity). 

F i n a l l y , ES #7 incorporates the interpretive results of these 
treatments to direct the analyst toward the designated analytical 
goal(s) v i a i m p l i c i t / e x p l i c i t linking mechanisms. The f i n a l goal 
(structure, composition, mechanism, ki n e t i c s , correlation, 
experimental design analysis, or library extension) is approached 
by incorporating the ea r l i e r decision/choices of ES #1-6 for 
evaluation in the decision structure of ES #7. Some procedures 
may be straightforward; e.g., a screening analysis with a single 
instrument/configurâtion generates a sample pattern that v i s u a l l y 
matches a known reference to the satisfaction of the analyst. 
Other studies involving several instrumental systems (in our 
scenario...chromatographic, spectral, thermal, or elemental), may 
require feedback from several interpretive results. Since TIMM is 
easily modified, the f i n a l form of EXMAT w i l l l i k e l y be improved 
over that described for this prototype; i . e . , including e x p l i c i t 
and i m p l i c i t linking mechanisms. 
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EXMATH - An Expert System for Pattern Recognition. A prototype 
expert system for pattern recognition and data analysis, EXMATH, 
has been developed to embed a chemometrician1s expertise into an 
accessible form for researchers. The selected l i b r a r y of 
subroutines developed over the past ten years comprise a portion 
of the EXMATH program to permit an integrated expert systems 
approach (Figures 5 and 6). 

For each analytical system, expert systems drivers were 
written which control data input to and operation of the 
algorithm. A second, more i n t e l l i g e n t set of drivers: (1) receive 
input in the form of a decision from the external expert system 
network; (2) collect the necessary subroutines for a heuristic 
algorithm to solve data questions; (3) inspect the v a l i d i t y of the 
input data; (4) drive the algorithm; and (5) transfer the results 
via GRC's REASON algorithm back to the external expert network for 
future decision-making. For example, i f a least squares 
regression on the data f i l e i s called by the external expert 
network, the EXMATH system inspects the input data, drives the 
regression under jacknifing protocols, and collects variable, 
residual, and f i t correlation results for analysis by the other 
expert system modules. The procedure i s implemented and executed 
without any mathematical expertise from the user. 

Summary 

Development of a linked network of expert systems, EXMAT, has been 
described for application to materials characterization. Selected 
instrumentation which are common to modern laboratories generate 
databases that are treated and interpreted within an analytical 
strategy directed toward a desired goal. Extension to other 
problem-solving situations may use the same format, but with 
specialized tools and domain-specific l i b r a r i e s . Importantly, a 
chemometrician1s expertise has been embedded into EXMAT through 
access to information derived from a linked expert system, 
EXMATH. Figures 7 and 8 outline this multilevel expert systems 
approach developed for application of selected analytical 
instruments to the f i e l d of materials science. 

Additionally, use of a commercial AI shell for expert system 
development has been demonstrated without the need to learn 
computer programming languages (C, Pascal, LISP or any of i t s 
variations), nor to have an intermediary knowledge engineer. 
Although this development effort of 4-5 man months was on a 
minicomputer, adaptation of EXMAT to the microcomputer version of 
TIMM is anticipated. The completed implementation of EXMAT w i l l 
support the belief that AI combined with i n t e l l i g e n t 
instrumentation can have a major impact on future analytical 
problem-solving. 

In general, i t appears that expert systems which combine 
symbolic/numeric processing capabilities are necessary to 
effectively automate decision-making in applications involving 
analytical and process instrumentation/sensors. Furthermore, 
these integrated decision structures w i l l l i k e l y be embedded (67-
69) within the analytical or process units to provide f u l l y 
automated pattern recognition/correlation systems for future 
i n t e l l i g e n t instrumentation. 
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E X A M P L E - A L G O R I T H M B UIL DI Ν G - Ε X S Ρ D S 

P U R P O S E - E M U L A T I O N OF S P S S P R O C E D U R E FOR 
D ISCRIMINANT A N A L Y S I S 

- U S E D IN A N A L Y S I S OF V A R I A N C E MODE 

- P R O D U C E S D A T A MAPPING OF S P A C E 

OF S A M P L E R E P L I C A T E V A R I A T I O N A B O U T 

S A M P L E M E A N S 

O P E R A T I O N - I N S P E C T S INPUT D A T A FOR 

(1) PRIOR P R E P R O C E S S I N G 
(2) N E C E S S I T Y OF RANK R E D U C T I O N 

PRIOR TO A N A L Y S I S 

- S C A L E S D A T A IF N E E D E D 

- P E R F O R M S F A C T O R A N A L Y S I S R E D U C T I O N IF N E E D E D 

- C O M P U T E S S A M P L E M E A N S AND A R R A N G E S D A T A AS 
A TRAIN ING S E T OF M E A N V E C T O R S AND T E S T S E T 
OF R E P L I C A T E V E C T O R S 

- P R O J E C T S BY F A C T O R A N A L Y S I S OF M E A N V E C T O R S 

- R E P R O D U C E S V A R I A B L E W E I G H T S FOR P R O J E C T I O N 
AND F U R T H E R A N A L Y S I S 

Figure 5. EXMATH - heuristic design. 
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E X T G R T . I N S P E C T S INPUT D A T A M A T R I C E S 

FOR P R E P R O C E S S I N G T A S K S 

- L O C A T E S T A R G E T AND M E R G E S / S O R T S F ILE 

FOR INPUT TO D A T A A N A L Y S I S 

- P E R F O R M S F A C T O R A N A L Y S I S IF N E E D E D 

- L E A S T S Q U A R E S R O T A T I O N TO 

T A R G E T OR H Y P O T H E S I S 

- R E C O N S T R U C T I O N OF M E A S U R E M E N T 

I N F O R M A T I O N MATRIX TO R E F L E C T 

C O R R E L A T I O N S 

WHY? 

(1) D E C O N V O L U T I O N OF C O M P O N E N T S IN M I X T U R E S 

(2) H Y P O T H E S I S T E S T S ON I N T E R P R E T A T I O N OF R E S P O N S E S 

(3) S P E C T R A L M A T C H I N G TO R E F E R E N C E R E S P O N S E S 

(4) L E A S T S Q U A R E S R E G R E S S I O N M O D E L I N G WITH 
"NOISE F I L T E R I N G " 

(5) D E T E R M I N A T I O N OF F U N D A M E N T A L P H Y S I C A L F A C T O R S 

U N D E R L Y I N G S A M P L E M E A S U R E M E N T R E S P O N S E S 

Figure 6· Target rotation - subroutine in EXMATH. 
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E X M A T 

A LINKED NETWORK OF EXPERT SYSTEMS 

WITH P A T T E R N R E C O G N I T I O N AND S E A R C H P R O G R A M S 
FOR M A T E R I A L S C H A R A C T E R I Z A T I O N 

C O M P O N E N T S A T T R I B U T E S 

1. D A T A B A S E M A N A G E M E N T A. S T O R A G E OF P A R A M E T E R S 
< ~ ~ ~ ~ B ™ ~ ~ ™ , " ™ ~ B ~ AND D A T A O N S A M P L E S FOR 

S E L E C T E D I N S T R U M E N T A L 
T E C H N I Q U E S 

B. RETRIEVAL OF S E L E C T E D 
S A M P L E S FORMING A D A T A 
S E T F O R M A T T E D FOR 
M U L T I V A R I A T E A N A L Y S I S 

C. C R E A T E , A D D , D E L E T E , H E L P 
AND SHOW F U N C T I O N S 

2. EXPERT SYSTEMS AND 
EMBEDDING SUBPROGRAMS - TIMM 

A. F O R T R A N S O U R C E C O D E 

B. EMBEDDING OF TIMM S Y S T E M 
WITHIN USER P R O G R A M S 

C. C A P A B L E OF HANDLING 
METRIC AND N O N - M E T R I C 
INFORMATION 

D. HEURIST IC DESIGN 

Figure 7. EXMAT - a linked network of expert systems. 

Continued on next page 
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C O M P O N E N T 

3. P A T T E R N R E C O G N I T I O N A . 
E X P E R T S Y S T E M -
E X M A T H B. 

C . 

D. 

E. 

4 . S P E Ç T R A I , ? ^ R 9 f 1 A N P 

M A T C H A L G O R I T H I M S 

P A R T I A L I N T E R P R E T A T I O N 

A I D S 

A T T R I B U T E S 

H E U R I S T I C D E S I G N 

S U P E R V I S E D AND U N S U P E R V I S E D 
P A T T E R N R E C O G N I T I O N , F A C T O R 
A N A L Y S I S , P L O T T I N G 

E X P E R T I S E I N C L U D E S D A T A 
P R E P R O C E S S I N G AND 
E V A L U A T I O N OF R E S U L T S 

U S E R I N T E R V E N T I O N FOR 
D A T A B A S E M O D I F I C A T I O N S 

I M P L E M E N T A B L E A S J A C K N I F I N G 
P R O C E D U R E 

A. P A I R S I N F R A R E D S P E C T R A 

B. P B M - M A S S S P E C T R A 

Figure 7. Continued. 
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K u l i k o w s k i , Cas im i r Α . , 75 
Kumar, A n i l , 337 
Langr idge, Rober t , 147 
LaRoe, W i l l i a m D. , 231 
Lev inson , Robert Α . , 209 
Levy, George C , 337 
Liebman, S . Α . , 365 
Low, P . , 258 
Mar t z , P h i l i p R. , 297 
Moore, Robert L . , 69 
Moseley, C. Warren, 231 
Palmer, P. T . , 321 
P a v e l l e , R i c h a r d , 100 
Renkes, Gordon D. , 176 
R i e s e , Char les Ε . , 18 
S a i l e r , H . , 258 
Schroeder , Μ. Α . , 365 
Smi th , A l l a n L . , 111 
Smi th , Dennis Η . , 1 
Smi th , Graham Μ . , 312 
Soo, Von-Wun, 75 
S t u a r t , J . D. , 18,31 
T o m e l l i n i , S t e r l i n g Α . , 312 
T r i n d l e , C a r l , 159 
Wang, Tunghwa, 244 
Wi l cox , C r a i g S . , 209 
Wipke, W. Todd, 136,188 
Woodruff, Hugh B . , 312 

Subject Index 

A b s t r a c t i o n , 189 
A c t i n o s p e c t a c i n 

d i g i t i z e d spectrum, 315,317t 
PAIRS i n t e r p r e t a t i o n , 315,3l8t 
s t r u c t u r e , 315-316 

Act inospec tac in—Cont inued 
t race o f su l fone f u n c t i o n a l i t y dur ing 

PAIRS i n t e r p r e t a t i o n , 315,3l8f 
A c t i o n s , d e f i n i t i o n , 94,95t,96 
A g r i c u l t u r a l fo rmu la t ions 

requ i rements , 87 
s t r u c t u r e o f the exper t 

system, 89,91-97 
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A g r i c u l t u r a l fo rmula t ions—Cont inued 
s t r u c t u r e of the problem, 89,90f 
t ypes , 87 

A g r i c u l t u r a l fo rmu la t ions a p p l i c a t i o n s , 
advantages o f exper t system, 88-89 

Analogy and i n t e l l i g e n c e i n model 
b u i l d i n g 

components, 138-139 
example o f e v a l u a t i o n , 140,142f 
g o a l s , 137,138f 
hardware c o n f i g u r a t i o n , I 4 0 , l 4 l f 
input sc reen , 140,141f 
ORTEP p l o t , 143,144f 
procedure, 139-144 
s c o r i n g , I 4 0 , l 4 2 f , l 4 3 
speed o f b u i l d i n g model, I43t 
supe rpos i t i on o f model and 

re f inement , I 4 3 , l 4 4 f 
A n a l y t i c a l systems, advances, 365-366 
A p p l i c a t i o n s o f exper t systems 

appropr ia te s e l e c t i o n , 7-8 
b i o l o g i c a l r e a c t o r s , 9 ,10f 
chemical sc ience and 

eng inee r i ng , 9-15 
communication s a t e l l i t e s , 9 ,11 ,12 f 
computing environment, 18-19 
d iagnos i s o f p lan t c o n d i t i o n s , 

r e a l t ime, 69-70 
execut ion e f f i c i e n c y , r e a l t ime, 69 
space s t a t i o n s , 11,13-15 

A r t i f i c i a l i n t e l l i g e n c e 
annual growth ra tes f o r companies 

market ing products based on, 2 
change i n number o f jobs 

a v a i l a b l e , 16 
exper t systems, 1-16 

A r t i f i c i a l i n t e l l i g e n c e d i a g n o s t i c 
system, g o a l s , 56-57 

A r t i f i c i a l i n t e l l i g e n c e i n o rgan ic 
chemistry 

advantages, 210 
background, 210 
ca tego r i es o f r e a c t i o n s , 210 
g e n e r a l i z a t i o n s about r e a c t i o n s 

and s t r u c t u r e s , 210 
A r t i f i c i a l i n t e l l i g e n c e systems 

development 
DENDRAL, 6 
INTERLISP, 6 
L ISP, 6 
MACSYMA, 6 

A r t i f i c i a l i n t e l l i g e n c e techniques 
fo r nuc lear magnetic 
resonance a n a l y s i s 

d e c i s i o n t r e e s , 340 
improvements, 347-348 
l o g i c programming, 340 
model matching s i m i l a r i t y 

ne t s , 340,341f ,342 
Assignment statement, 

d e f i n i t i o n , 111-112 

Axiom, d e f i n i t i o n , 194 
Axiomat ic t heo r i es 

d e f i n i t i o n , 194 
s t e p s , 194 

Axiomat ic theory approach, 
s y n e t h e s i s , 188 

Β 

Backward c h a i n i n g , d e f i n i t i o n , 306 
Bimodal l o g i c 

d e f i n i t i o n , 196 
i m p l i c a t i o n r u l e , 196t,197 

C 

C a l c u l u s , d e f i n i t i o n , 190 
ChemData, d e s c r i p t i o n , 152 
Chemical educa t ion , a p p l i c a t i o n s o f 

computers, 125 
Chemis t ry , unique c h a r a c t e r i s t i c s , 258 
Complete r e a c t i o n concept , 

d e f i n i t i o n , 214 
Complex e q u i l i b r i u m c a l c u l a t i o n s 

enzyme k i n e t i c s , 79-82 
magnesium i o n s , 78-79 
pharmacokinet ics and drug dosage 

regimen d e s i g n , 82,83 
Computer a lgebra system—See MACSYMA 
Computer -ass is ted i n s t r u c t i o n , 

d e s c r i p t i o n , 126 
Computer-or iented no ta t i on concern ing 

IR s p e c t r a l eva lua t i on 
(CONCISE), d e s c r i p t i o n , 313 

Computer so f tware , exper t systems, 1-2 
Computers i n chemica l educat ion 

advantages, 125 
GEORGE, 126-133 
l i m i t a t i o n s , 126 
sof tware c a t e g o r i e s , 126 

CONCISE—See Computer-or iented no ta t i on 
concern ing IR s p e c t r a l e v a l u a t i o n 

Corona de te rm ina t i on , d e c i s i o n 
t r e e , 21-22f 

Corona de terminat ion r u l e expressed i n 
au toma t i ca l l y generated r a d i a l 
code, 21-22f 

Corona r u l e , example s e t , 20-22f 

D 

Data bases f o r MS-MS 
spectrum data base, 324-325 
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Data bases fo r MS-MS—Continued 
s t r u c t u r e data base, 325 

Data center d i s p l a y s 
recommendation s c r e e n , 65,67f 
recommendation summary s c r e e n , 65,66f 

Data base o r g a n i z a t i o n f o r o rgan ic 
s t r u c t u r e s 

comparison to Cambridge 
c r y s t a l l o g r a p h i c data base, 227 

comparison to the screen 
approach, 227-228 

l i n e a r no ta t i on f o r r e a c t i o n s and 
s t r u c t u r e s , 228-229 

p a r t i a l o r d e r i n g , 224,225f 
r e t r i e v a l a l g o r i t h m , 224,226-227 

DCG—See D e f i n i t e c lause grammar 
Dec i s i on t r e e , corona 

de te rm ina t i on , 21-22f 
D e c l a r a t i v e languages 

c h a r a c t e r i s t i c s , 112 
d e s c r i p t i o n , 112 

D e f i n i t e c lause grammar (DCG), 232-233 
D e f i n i t e i n t e g r a t i o n , a p p l i c a t i o n o f 

MACSYMA, 107 
D i - n - o c t y l ph tha la te _ 

daughter spectrum o f C -con ta i n i ng 
M + , 333,334f,335 

mass spectrum, 328,329f 
match o f 105 + daughter spec t ra v s . 

d i -n-oc tv_ l p h t h a l a t e , 328t ,330f 
match o f 149 daughter spec t ra v s . 

d i - n - o c t y l p h t h a l a t e , 331t ,332f 
parent spectrum o f 

mass 149, 331,333,334f 
spect rum-subst ruc ture 

c o r r e l a t i o n s , 331 
s t r u c t u r e s , 328,329f 

D iagnos is 
d e f i n i t i o n , 56 
exper t system, 57 

D i e l s - A l d e r r e a c t i o n s 
a lgo r i t hm f o r reg iochemica l 

s e l e c t i o n , 238 
bas i c f r o n t i e r molecu lar o r b i t a l 

theory , 234 
bas i c h ighes t occupied molecu lar 

o r b i t a l - l o w e s t unoccupied molecu
l a r o r b i t a l c a l c u l a t i o n s , 235-236 

de termina t ion o f permutated lowest 
unoccupied molecu lar o r b i t a l 
c o e f f i c i e n t s , 237-238 

de termina t ion o f subs t i t uen t 
e f f e c t s , 236-237t 

d isconnec t i on approach, 231 
genera l from d e r i v a t i o n , 239,240t 
grammar, 233-234 
na ive approach d e r i v a t i o n , 238,239t 
no ta t i on rearrangement, 241-242 
s t r u c t u r a l c o n s t r a i n t s on 

r e a c t a n t s , 235 
use of genera l form i n r u l e 

fo rmat ion , 240-241 

D i f f e r e n t i a l c a l c u l u s , a p p l i c a t i o n of 
MACSYMA, 104-105 

D i f f e r e n t i a l equa t ions , a p p l i c a t i o n o f 
MACSYMA, 109 

D isconnec t ion approach, 
d e s c r i p t i o n , 231-232 

Ε 

Easy d i s t ance geometry e d i t o r 
c o n t r o l p o i n t s , 151 
d e s c r i p t i o n , 151 
s e l e c t i o n , 151,155f 
su r face gene ra t i on , 151 

ECAT—See Expert chromatographic 
a s s i s t a n c e team 

E l a b o r a t i o n o f r e a c t i o n s fo r o rgan ic 
syn thes i s (EROS), r e a c t i o n 
schemes, 259 ,26 l f 

E m u l s i f i a b l e concen t ra te , 
d e s c r i p t i o n , 88 

EROS—See E labo ra t i on o f r e a c t i o n s 
f o r o rgan ic syn thes i s 

Example s e t , corona r u l e , 20-22f 
Examples o f exper t -sys tem a p p l i c a t i o n s 

b i o l o g i c a l r e a c t o r s , 9 ,10 f 
communication s a t e l l i t e s , 9 ,11 ,12 f 
space s t a t i o n s , 11,13-15 

Execut ion e f f i c i e n c y 
r a d i a l , 24-25 
r e a l - t i m e a p p l i c a t i o n o f exper t 

systems, 69 
EXMAT—See Linked network o f exper t 

systems fo r m a t e r i a l s a n a l y s i s 
EXMATH—See Expert system f o r pa t te rn 

r e c o g n i t i o n 
Expert 

exper imenta l des ign w i th 
PENNZYME, 81-82 

f i t t i n g o f models to d a t a , 80 
s e l e c t i o n o f a computat iona l 

model, 80 
s e l e c t i o n o f a conceptua l model, 80 

Expert chromatographic a s s i s t a n c e team 
(ECAT) 

automat ic t e s t i n g , 288 
development equipment, 283,285,287f 
development o f knowledge 

bases , 285-286 
elements invo lved i n development 
and a p p l i c a t i o n , 280,281f 

examples o f f a c t s and r u l e s , 283,284f 
exper t system programming, 279-280 
f i r s t r u l e s , 286 
IF-THEN r u l e s , 286,287f ,288 
knowledge r e p r e s e n t a t i o n , 294-295 
l i m i t a t i o n s o f conven t iona l 

programming, 279 
module development, 292-294 
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ECAT—Continued 
p r o j e c t motivation, 279 
system s t r a t e g y , 280,283 
task modules, 280,282f 
user i n t e r f a c e s , 295 

Expert system 
d e f i n i t i o n , 56,279-280 
examples of a p p l i c a t i o n s , 29 
formulation of a g r i c u l t u r a l 

chemicals, 87-97 
major components, 3 
pa r t s , 56 
TOGA, 20-21 

Expert system f o r a g r i c u l t u r a l 
formulations 

accessing e x t e r n a l software, 93 
future developments, 96-97 
response checking f u n c t i o n s , 92t 
status of development, 92 
s t r u c t u r e , 89,91f 
s t r u c t u r e of conclusions, 93f 
st r u c t u r e of FACTS, 92f,93 
s t r u c t u r e of r u l e s , 93,94t,95-96 

Expert system f o r patte r n r e c o g n i t i o n 
(EXMATH) 

d r i v e r s , 376 
h e u r i s t i c design, 376,377f 
process, 375 
subroutine, 376,378f 

Expert system f o r process c o n t r o l , 
r e a l time, 69-74 

Expert system f o r transformer f a u l t 
d i a g n o s i s , TOGA, 25-29 

Expert system r u l e base 
a c t i v a t i o n by inference engine, 58,60 
ba s i c step, 57-58,59f 
b u i l d i n g the r u l e base, 60 
malfunction, 60 
modes, 57 
r u l e s , 57-58 

Expert systems 
a n a l y s i s of multicomponent 

m a t e r i a l s , 366-381 
and t r a d i t i o n a l software engineering, 

d i f f e r e n c e s , 7 
a p p l i c a t i o n s to supervise 

c a l c u l a t i o n s and design 
experiments, 78-85 

a p p l i c a t i o n s r e l a t e d to chemical 
science and engineering, 9-15 

appli e d to chemistry, 1-16 
a r t i f i c i a l i n t e l l i g e n c e , 1-16 
b u i l d i n g , 76,77 
c a l c u l a t i o n s u p e r v i s i o n , 76 
c h a r a c t e r i s t i c s and 

values, 2-4 
computer algebra system, 100 
computer software, 1-2 
co n s u l t a t i o n problems, 75 
d e f i n i t i o n , 18 
d e s c r i p t i o n , 3 

Expert systems—Continued 
diagnosis of plant c o n d i t i o n s , 

real-time a p p l i c a t i o n o f , 69-70 
D i e l s - A l d e r r e a c t i o n s , 231-242 
execution e f f i c i e n c y , r e a l - t i m e 

a p p l i c a t i o n of, 69 
hardware technology r e v o l u t i o n , 13 
high-performance l i q u i d 

chromatographic methods 
developments, 278-295 

knowledge e x t r a c t i o n , 27-28 
MS-MS data, 321-335 
NMR spectroscopy, 337-348 
organic chemistry, 258-274 
organic s t r u c t u r e 

determination, 350-363 
organic syntheses, 244-257 
programs f o r chemistry, 280 
Rulemaster, 18-29 
s c i e n t i f i c and engineering 

a p p l i c a t i o n s , 8 
s e l e c t i n g an appropriate 

a p p l i c a t i o n , 7-8 
types, 75 
u l t r a c e n t r i f u g a t i o n , 297-311 
uses and values, 4-5 

Expert systems a p p l i c a t i o n s , computing 
environment, 18-19 

Expert systems b u i l d e r program, 
advantages, 76 

Expert systems b u i l d i n g , example f o r 
m u l t i p l e e q u i l i b r i u m 
c a l c u l a t i o n , 76-77 

Expert systems developing, model, 7-9 

F 

F a c t o r i z a t i o n , a p p l i c a t i o n o f 
MACSYMA, 105-106 

Four major steps, model f o r developing 
an expert system, 7-9 

G 

Generation of molecular s t r u c t u r e s 
(GENOA) 

advantage, 333 
d e s c r i p t i o n , 324,333 
e m p i r i c a l formula of the unknown 

compound, 333 
example of d i - n - o c t y l 

phthalate, 333,334f,335 
Generator d i a g n o s t i c system, a c t u a l 

experience, 65,68 
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Gener ic r u l e s 
d e s c r i p t i o n , 153 
hydrophob ic i ty 

examples, 153-154,155-156f 
GENOA—See Generat ion o f molecu lar 

s t r u c t u r e s 
GEORGE, 126-127,128f 

comparison to other programs, 126 
diagram fo r de terminat ion o f a n i l i n e 

m o l a r i t y , 121,129,132f 
diagram fo r de terminat ion o f e thano l 

d e n s i t y , 129,132f 
d i s p l a y o f u n i t conve rs i on , 129,130f 
domain, 126 
example o f a r e l a t i o n page, 131,132f 
ex tens ion o f the domain o f 

a p p l i c a t i o n , 133 
l e v e l s o f use , 127-132 
l o g i c , 127 
primary menu, 127,128f 
program, 127-132 
screen e x p l a i n i n g molecu lar mass 

c a l c u l a t i o n , 127,129,130f 
Group theory 

a p p l i c a t i o n o f symbol ic 
programming, 176-185 

sof tware a v a i l a b l e , 185 

H 

Hardware technology r e v o l u t i o n , exper t 
systems, 13 

H e u r i s t i c s , d e f i n i t i o n , 3-4,189 

KARMA—Continued 
i n t e r a c t i o n s f o r enzyme-l igand 

b i n d i n g , 152 
knowledge, 152 
molecule e d i t o r , I48,150f 
pop-up menus, I48,150f 
r u l e f o rmu la t i on , 153 
s p e c i f i c r u l e s , 156-157 
system c o r e , 151-157 
system d e s i g n , I 4 8 , l 4 9 f 
system implementat ion, 148,151 

KarmaData, d e s c r i p t i o n , 152 
KEE-ass i s t ed receptor mapping a n a l y s i s 

d e s c r i p t i o n 147-148 
d i f f e r e n c e from t r a d i t i o n a l approach 

to drug d e s i g n , 147-148 
Knowledge, manipu la t ion f o r use i n 

computer programs, 2 
Knowledge base 

con ten t , 4 
exper t systems, 3-5 

Knowledge base fo r expert systems i n 
o rgan ic chemistry 

charge d i s t r i b u t i o n , i n d u c t i v e , and 
resonance e f f e c t s , 263,265 

concepts invo lved i n organ ic r e a c t i o n 
causes , 260,264f 

heats o f r e a c t i o n and bond 
d i s s o c i a t i o n ene rg ies , 260,262t 

hypercon juga t ion , 265 
m u l t i l i n e a r r eg ress ion 

a n a l y s i s , 265-266,267-268f 
p o l a r i z a b i l i t y e f f e c t s , 262-263,264f 
r e a c t i v i t y space approach, 266-274 

Knowledge eng inee r i ng , d e s c r i p t i o n , 3-4 
Knowledge e x t r a c t i o n 

exper t systems, 27-28 
Rulemaster , 27-28 
TOGA, 27-28 

IF-THEN r u l e s , ru le -based exper t 
systems, 3 

Incremental mu l t i va lued l o g i c 
d e s c r i p t i o n , 199-200 
i m p l i c a t i o n , 201 
incrementa l a c q u i s i t i o n o f 

ev idence , 200-201 
I n d e f i n i t e i n t e g r a t i o n , a p p l i c a t i o n o f 

MACSYMA, 107 
I n t u i t i v e theory , d e f i n i t i o n , 194 

Κ 

KARMA 
gener i c r u l e s , 153-156 
g raph ic i n t e r f a c e , 157 

L 

Languages, programming, v s . programming 
environments, 6 

Linked network o f exper t systems f o r 
m a t e r i a l s a n a l y s i s (EXMAT) 

a n a l y t i c a l g o a l s , 375 
chemometr ic-search a l g o r i t h m s , 375 
data g e n e r a t i o n , 367 
documentation and eva lua t i on o f 

r e s u l t s , 375 
exper t system network, 368,370f 
i n d i v i d u a l systems, 367 
ins t rumenta l c o n f i g u r a t i o n and 

c o n d i t i o n s , 368 
i n t e r p r e t a t i o n , 375 
o u t l i n e , 376,379-38lf 
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Linked Network o f EXMAT—-Continued 
o v e r a l l d e c i s i o n s t r u c t u r e , 368,371f 
p a r t i a l d e c i s i o n 

s t r u c t u r e , 368,372f,374f 
problem d e f i n i t i o n and a n a l y t i c a l 

s t r a t e g y , 368 
r u l e s , 368,373 

LISP f o r symbol ic programming 
advantages, 177-178 
implementat ion, 178-185 

LMA—See Log ic machine a r c h i t e c t u r e 
Log ic 

b imoda l , 194-197 
incrementa l m u l t i v a l u e d , 199-201 
L u k a s i e w i c z - T a r s k i 

m u l t i v a l u e d , 197-199 
Log ic machine a r c h i t e c t u r e (LMA), 

d e f i n i t i o n , 244 
L o g i c a l i n fe rences per second—See LISP 
L o g i s t i c r eg ress ion a n a l y s i s 

d e s c r i p t i o n , 273 
example o f problem r e a c t i o n 

p r e d i c t i o n , 274,275f 
network o f bond break ing and making 

p a t t e r n s , 274,275f 
L u k a s i e w i c z - T a r s k i mu l t i va lued l o g i c 

a l lowed v a l u e s , 198t 
cumulat ive ev idence , 198-199 
d e s c r i p t i o n , 197 

M 

Macrooperators , 189 
MACSYMA 

advantages, 101-102 
c a p a b i l i t i e s , 102-103 
d e s c r i p t i o n , 100-101 
equipment, 100 
examples, 103-110 
uses , 103 

Magnetic resonance imaging 
development, 339 
MRI_L0G_ESP, 342-347 
system f low c h a r t , 339-340,341f 

Ma l func t ion 
d e f i n i t i o n , 56,60 
examples o f a once-through b o i l e r 

system, 6 0 , 6 l t 
Manual c o n s t r u c t i o n o f molecu lar 

models, d e s c r i p t i o n , 136 
Mass spectrometry-mass spectrometry 

data bases , 324-325 
development of data bases , 322,324 
molecu lar s t r u c t u r e 

genera to r , 324,333-335 
o v e r a l l system fo r de te rmina t ion f o r 

s t r u c t u r e , 322,323f 
spec t ra matching program, 325-327 

MS-MS—Continued 
spect rum-subst ruc ture 

r e l a t i o n s h i p , 326-333 
s t r u c t u r e a n a l y s i s , 322 
subs t ruc tu re -p rope r t y 

r e l a t i o n s h i p s , 322 
Mass spectrometry-mass spectrometry 

spec t ra matching program 
d e s c r i p t i o n , 325 
match f a c t o r s , 326,327f 
range o f standard c o n d i t i o n s , 326 

Minimum r e a c t i o n concept , 
d e f i n i t i o n , 214 

Model , d e f i n i t i o n , 259 
Model computer sof tware fo r 

spec t roscop i c a n a l y s i s (NMR1) 
d e s c r i p t i o n , 338 
d i f f i c u l t i e s , 338,339 

Model f o r deve lop ing an expert system, 
four major s t e p s , 7-9 

Modules o f ECAT 
column and mobile phase 

d e s i g n , 288-292 
column d i a g n o s i s , 292t 
de terminat ion o f chemica l and 

s t r u c t u r a l i n fo rmat ion on the 
sample, 292 

Mo lecu la r model b u i l d i n g 
a p p l i c a t i o n o f analogy and 

i n t e l l i g e n c e , 136-144 
au tomat ic , 137 
manual c o n s t r u c t i o n , 136 
PRXBLD, 137 
SCRIPT, 137 
WIZARD, 137 

Molecu la r s p e c t r a l i n t e r p r e t a t i o n , 
s t e p s , 350-351 

Mo lecu la r s t r uc tu re programs 
accep t ing the s k e t c h , 160-161 
d i s tance geometry changes d i s t a n c e s 

to Ca r t es i an c o o r d i n a t e s , 164,166 
ex tens ions o f the f u n c t i o n a l fragment 

data s t r u c t u r e , 166-167 
fragments, 164,165f 
i n te rac t ing - f rag raen ts modeling 

schemes, 167 
LISP s t r u c t u r a l r e c o g n i z e r , 163-164 
o b s t a c l e s to wide use , 160 
p re l im ina ry p rocess ing of the 

s k e t c h , 161 
problem, 160 
rep resen ta t i on o f the molecule i n 

L ISP , 163 
rou t i ne to a s s i g n Lewis 

s t r u c t u r e s , I 6 l , l63 , l 65 f 
s p e c i f i c a t i o n o f v e r t i c e s , I 6 l , l 6 2 f 

Mo lecu la r s t r u c t u r e rep resen ta t i on i n 
c lause form 

atom f u n c t i o n , 246-247 
bond f u n c t i o n , 246-247 
c l a u s e s , 245 
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392 ARTIFICIAL INTELLIGENCE APPLICATIONS IN CHEMISTRY 

Molecular structure representation in 
clause form—Continued 

fragments, 246-247 
Monitoring, definition, 56 
Monitoring system of a power plant 

diagnosis activation l i m i t , 57 
schematic, 54f,57 
sensors, 57,58t 

MRI_LOG_ESP 
branches, 342,346 
commands, 347 
output f i l e s , 347 
sample session, 342,343-345 
s t a t i s t i c a l procedures, 346-347 

MYCIN, description, 138 

Ν 

Necessity, definition, 58 
Nuclear magnetic resonance spectro

scopic analysis, systems, 337 

0 

Once-through boiler system malfunction 
cation conductivity sensor 

malfunction, 62t,64f,65 
description, 60,6lt 
diagnoses, 60-61 
number diagnosed for each 

sensor, 60,6lt 
sensor validation, 61-62,63f 

Organic structure determination 
accessibility to knowledge base and 

reasoning process, 352 
chemical data base, 355,356f 
example for 

4-phenyl-2-butanone, 356-358 
flow chart, 350,353f 
interpretation of spectra, 352,353f 
IR expert module, 355 
messages, 355-356 
program description, 354-355 
r e c a l l , 360 
r e l i a b i l i t y , 360 
testing of known 

structures, 357-362 

Ρ 
PAIRS—See Program for the analysis 

of infrared spectra 
Pattern recognition programs, 

development, 366 

Pattern-matching system for spectra 
c l a s s i f i c a t i o n , 351 

PENNZYME 
enzyme and transport kinetic 

program, 79-80 
f i t t i n g of models to data, 81 
interface with Expert, 80-82 

Pharmacokinetics and drug dosage 
regimen design 

description of problem, 82 
modeling considerations, 83-85 
physiological pharmacokinetics, 83-85 
use of expert systems, 84-85 

4-Phenyl-2-butanone 
explanations of conclusions of 

organic structure 
determination, 357,359f 

interpretation of 
spectra, 356-357,358f 

Physicochemical parameters, 
examples, 151-152 

PICON—See Process intelligent control 
Planning, 189 
P o l a r i z a b i l i t y , definition, 263 
Polynomial equations, applications, 

application of MACSYMA, 103-104 
Postulates, definition, 194-195 
Power plant 

definition, 53 
schematic, 53,54f 
types of boilers, 53 

Power plant chemistry 
dependence on boiler, 53,55 
problems, 55 

Predicate, definition, 193 
Predicate calculus 

formal symbols used QED, 192t 
logic, 190-192 
translation of chemical statements 

into predicate logic, 192 
working definition, 192 

Predicates, definition, 93-94,95t 
Problem solving and inference engine, 

expert systems, 3 
Procedural languages 

characteristics, 111-112 
definition, 111 
steps in algebraic 

equation solving, 113 
Process control, real-time expert 

system for, 69-74 
Process intelli g e n t control (PICON) 

backward-chaining inference, 70-71 
design requirements, 70 
example of inference, 73 
focus f a c i l i t y , 71,73 
forward-chaining inference, 70-71 
overall structure of package, 74f 
system for process 

control, 71,72f 
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INDEX 393 

Program fo r the a n a l y s i s o f i n f r a r e d 
spec t ra (PAIRS) 

automated r u l e genera t ion 
program, 313-314 

i n fo rmat ion f l ow, 312-313,316f 
s t r e n g t h s , 313 
t r a c i n g i n t e r p r e t a t i o n r u l e s , 314-319 

Programming languages, v s . programming 
environments, 6 

Proof o r d e r i n g , v s . t ime-ordered 
p resen ta t i on o f f i r e d r u l e s , 23 

Prototype ( bu i l d i ng ) exper t system, 
re f inement , 28 

PRXBLD, d e s c r i p t i o n , 137 

Q 

QED program 
agenda l i s t , 204-205 
a n a l y s i s example, 205,206f ,207 
b lock d iagram, 201,202f 
BNF grammar fo r language, 203f 
comp i la t i on process fo r r u l e s , 202f 
data base, 204 
d e s c r i p t i o n , 201-202 
i n t e r n a l form o f ALPHA-TO-SC, 204t 
parse t r e e , 203f 
r u l e p a s s i n g , 202 
r u l e s , 205 

R 

Rad ia l 
d i s c u s s i o n , 20-21,23 
e r r o r de tec t i on at b u i l d i n g 

t ime, 24-25 
execu t ion e f f i c i e n c y , 24-25 
i n t e r f a c i n g so f tware , 23 
language f e a t u r e s , 21 
s i m i l a r i t i e s to P a s c a l and ADA, 21 

React ion r u l e data base 
connect ion t a b l e s 

o r g a n i z a t i o n , 250-251 
Ge le rn te r r e a c t i o n r u l e , 247,249f 
mu l t i s t ep r u l e s , 250-251 
s i n g l e - s t e p r u l e s , 250-251 

React ion r u l e t r a n s l a t i o n i n t o c l auses 
c lause rep resen ta t i on o f goa l and 

subgoa l , 251 
v a r i a b l e subs t ruc tu re molecule v s . 

known molecu le , 251-252 
R e a c t i v i t y space approach 

c l u s t e r a n a l y s i s , 270,272f ,273 

R e a c t i v i t y space approach c l u s t e r 
ana l ys i s—Con t i nued 

compounds used i n d e r i v i n g a 
r e a c t i v i t y f u n c t i o n , 270,271t 

d i s c u s s i o n , 266 
h e t e r o l y s i s , 270,271f 
l o g i s t i c r e g r e s s i o n , 273-274 
s u p e r v i s e d - l e a r n i n g pa t te rn 

r e c o g n i t i o n methods, 273 
th ree-d imens iona l r e a c t i v i t y 

space, 266,269f ,270 
unsupe rv i sed - l ea rn ing pa t te rn 

r e c o g n i t i o n methods, 270 
Rea l - t ime a p p l i c a t i o n o f exper t systems 

d iagnos i s o f p lan t c o n d i t i o n s , 69-70 
execu t ion e f f i c i e n c y , 69 

Rea l - t ime expert system f o r process 
c o n t r o l , 69-74 

Reasoning 
symbol ic a p p l i c a t i o n appropr ia te 

to expert systems, 8 
use i n problem s o l v i n g , 3 

Rule-based system f o r spec t ra 
c l a s s i f i c a t i o n , 351 

Rule-based systems, d e f i n i t i o n , 306 
RuleMaker 

i n d u c t i v e l e a r n i n g , 20-21 
knowledge a c q u i s i t i o n system, 20 

RuleMaster 
C-code g e n e r a t i o n , 24 
exper t systems, 18-29 
exp lana t i on o f the l i n e o f 

reason ing , 23 
e x t e r n a l p rocesses , 23-24 
h i s t o r y , 19 
knowledge e x t r a c t i o n , 27-28 
p o r t a b i l i t y , 25 
programming s k i l l s r e q u i r e d , 28-29 
two p r i n c i p a l components, 20,21,23 

S 

S c i e n t i f i c and eng ineer ing 
a p p l i c a t i o n s , exper t systems, 5-6 

SECS—See S imu la t i on and e v a l u a t i o n o f 
chemica l syn thes i s program 

S e l f - o r g a n i z e d knowledge base f o r 
o rgan ic chemist ry 

c a l c u l a t i o n o f g e n e r a l i z a t i o n 
v a l i d i t i e s , 217-218 

i n t e r a c t i v e s e s s i o n s , 219,220-223f 
r e a c t i o n g e n e r a l i z a t i o n s 

based on s p e c i f i c 
obse rva t i ons , 212,214,215-216f 

r e a c t i o n r e p r e s e n t a t i o n , 211-212,213f 
S e n t e n t i a l c a l c u l u s , d e s c r i p t i o n , 195 
S i m i l a r i t y o f molecules 

a l i p h a t i c a l c o h o l s , 169,170,171f 
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S i m i l a r i t y o f molecules—Cont inued 
a p p l i c a t i o n s , 174 
c a l c u l a t i o n o f s i m i l a r i t y i ndex , 170 
complex i ty measurements, 173,174t 
d i s tance measurements, 170,173t 
p e r c e p t i o n , 169 
q u a n t i f i c a t i o n , 170 
s i m i l a r i t y ma t r i x , 170,171f 
subgraph enumerat ion, 170,172t,174 

S i m p l i f i c a t i o n , a p p l i c a t i o n o f 
MACSYMA, 106-107 

S imu la t i on and eva lua t i on o f chemica l 
s yn thes i s program (SECS), p lan 
r e p r e s e n t a t i o n , 189-190 

S imu la t i on o f complex k i n e t i c s 
a d a p t a b i l i t y , 123 
a p p l i c a t i o n s , 119-120 
approaches to mathematical 

problems, 120-121 
data s t r u c t u r e s , 122 
equipment, 121 
input language, 121-122 
mathemat ical problem, 120 
program output , 122-123 
syntax a n a l y s i s , 122 

Software eng inee r i ng , t r a d i t i o n a l , 
d i f f e r e n c e s , exper t systems, 7 

Software f o r s c i e n t i f i c computat ion, 
rev iew, 111-112 

S p e c i f i c r u l e s 
d e s c r i p t i o n , 154 
examples, 154,156f,157 

Spect rum-subst ruc ture r e l a t i o n s h i p s 
example f o r d i - n - o c t y l 

p h t h a l a t e , 328-333 
procedure, 326,328 

SpinPro u l t r a c e n t r i f u g a t i o n exper t 
system 

backward-chain ing i n fe rence 
eng ine, 306-307,308f 

c a l c u l a t i o n f u n c t i o n , 309 
c o n s u l t a t i o n f u n c t i o n , 299 
d e s c r i p t i o n , 298 
des ign inpu ts r e p o r t , 301-302 
development, 309-310 
in fo rmat ion f u n c t i o n , 307,308f 
lab p lan r e p o r t , 306 
lab r o t o r s , 300-301 
major f u n c t i o n s , 298-299 
methods, 204 
o p e r a t i o n , 299-300 
op t ima l p lan r e p o r t , 301,303f ,304 
o p t i m i z a t i o n c r i t e r i a , 300 
p lan comparison r e p o r t , 301,303f ,306 
p r o t e i n sample s e p a r a t i o n , 304-305 
user i n t e r f a c e , 299 
v s . expe r t , 310-311 

Steam power p l a n t , downtime, 52 
S u f f i c i e n c y , d e f i n i t i o n , 57-58 
Symbol ic programs f o r group theory 

advantages, 176-177 

Symbolic programs fo r group 
theory—Cont inued 

bas i c f u n c t i o n s , 178-180 
d i s p l a y decomposi t ion o f 

p roduc ts , I83 , l 84 t 
fu tu re p l a n s , 185 
language, 177-178 
proper ty l i s t s f o r c y c l i c 

group, 179t,l80 
record s t r u c t u r e , l83t 
t e rm ina l d i s p l a y o f cha rac te r 

c o r r e l a t i o n t a b l e s , I 8 l , l 8 2 t 
t e rm ina l d i s p l a y o f charac te r 

t a b l e , 181t 
te rm ina l d i s p l a y o f c l a s s e s , 180,1811 
te rm ina l d i s p l a y o f the decomposi t ion 

o f p roduct , I82t 
Symbol ic reasoning 

a p p l i c a t i o n appropr ia te to exper t 
systems, 8 

use i n problem s o l v i n g , 3 
Synthes is p lann ing programs 

approaches to l a rge search 
spaces , 189-190 

complex i ty o f syne thes i s 
t r e e , 189,191f 

f i r s t - o r d e r p red i ca te 
c a l c u l u s , 190,192 

problems, 189 
procedure, 188-189 
s t r a t e g i c b a s i s , 189 
symmetry-based s t ra tegy f o r 

8 -carotene, 190,191f 
Syn thes is w i th LMA (SYNLMA) 

advantage, 244-245 
d e f i n i t i o n , 244 
improvements, 256-257 
p rocess , 245 
r e a c t i o n r u l e database, 247-251 
s y n t h e t i c des ign p rocess , 253-256 
t r a n s l a t i o n o f r e a c t i o n r u l e s i n t o 

c l a u s e s , 251,252f 
Syn the t i c des ign process us ing SYNLMA 

p rob lem-so lv ing t ree f o r s y n t h e s i s o f 
darvon, 253,254-255f 

two- t ree system, 253,256 

Τ 

Tay lo r -Lauren t s e r i e s , a p p l i c a t i o n o f 
MACSYMA, 108-109 

The i n t e l l i g e n t machine model (TIMM) 
d e c i s i o n and c o n t r o l 

s t r u c t u r e , 368,369f 
s e c t i o n s , 367 

Time-ordered p resen ta t i on o f f i r e d 
r u l e s , p roof o r d e r i n g , 23 

TIMM—See The i n t e l l i g e n t machine model 
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I N D E X 

TK So l ve r 
a c i d r a i n example, 115-116f, 117 
c a p a b i l i t i e s , 113 
chemica l a p p l i c a t i o n s , 117-118 
computat ional approach, 112-113 
d e f i n i t i o n , 112 
van der Waals gas 

example, 1 1 3 , 1 1 ^ , 1 1 5 
T o o l s , used i n c o n s t r u c t i n g exper t 

systems d e s c r i p t i o n , 6 
Transformer f a u l t d i a g n o s i s , exper t 

system f o r , TOGA, 25-29 
Transformer o i l gas a n a l y s i s (TOGA) 

expert system, 20-21 
exper t system fo r t ransformer 

f a u l t d i a g n o s i s , 25-29 
d i a g n o s t i c approach, 25 
knowledge e x t r a c t i o n , 27-28 
knowledge re f inement , 28 
o p e r a t i o n a l use , 27 
reasons f o r b u i l d i n g the system, 26 
v a l i d a t i o n , 26-27 

U 

U l t r a c e n t r i f u g a t i o n , problems, 297 

V 

V a l i d i t y , a i d i n p recursor 
gene ra t i on , 218 

Var iance -cova r iance matr ix o f 
parameters, c a l c u l a t i o n by 
PENNZYME, 82 

W 

Wettable powders, d e s c r i p t i o n , 88 
Wiswesser l i n e no ta t i on (WLN), 

background, 232 
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